Show simple item record

Merging of Storm Time Midlatitude Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles

dc.contributor.authorAa, Ercha
dc.contributor.authorZou, Shasha
dc.contributor.authorRidley, Aaron
dc.contributor.authorZhang, Shunrong
dc.contributor.authorCoster, Anthea J.
dc.contributor.authorErickson, Philip J.
dc.contributor.authorLiu, Siqing
dc.contributor.authorRen, Jiaen
dc.date.accessioned2019-04-02T18:11:47Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-02
dc.identifier.citationAa, Ercha; Zou, Shasha; Ridley, Aaron; Zhang, Shunrong; Coster, Anthea J.; Erickson, Philip J.; Liu, Siqing; Ren, Jiaen (2019). "Merging of Storm Time Midlatitude Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles." Space Weather 17(2): 285-298.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/148412
dc.description.abstractPostsunset midlatitude traveling ionospheric disturbances (TIDs) and equatorial plasma bubbles (EPBs) were simultaneously observed over American sector during the geomagnetic storm on 8 September 2017. The characteristics of TIDs are analyzed by using a combination of the Millstone Hill incoherent scatter radar data and 2‐D detrended total electron content (TEC) from ground‐based Global Navigation Satellite System receivers. The main results associated with EPBs are as follows: (1) stream‐like structures of TEC depletion occurred simultaneously at geomagnetically conjugate points, (2) poleward extension of the TEC irregularities/depletions along the magnetic field lines, (3) severe equatorial and midlatitude electron density (Ne) bite outs observed by Defense Meteorological Satellite Program and Swarm satellites, and (4) enhancements of ionosphere F layer virtual height and vertical drifts observed by equatorial ionosondes near the EPBs initiation region. The stream‐like TEC depletions reached 46° magnetic latitudes that map to an apex altitude of 6,800 km over the magnetic equator using International Geomagnetic Reference Field. The formation of this extended density depletion structure is suggested to be due to the merging between the altitudinal/latitudinal extension of EPBs driven by strong prompt penetration electric field and midlatitude TIDs. Moreover, the poleward portion of the depletion/irregularity drifted westward and reached the equatorward boundary of the ionospheric main trough. This westward drift occurred at the same time as the sudden expansion of the convection pattern and could be attributed to the strong returning westward flow near the subauroral polarization stream region. Other possible mechanisms for the westward tilt are also discussed.Key PointsPostsunset EPBs driven by PPEF were observed to merge with midlatitude TIDs forming stream‐like depletion structures over American sectorDepletions reached 46 MLAT that map to 6,800 km over the equator and drifted westward reaching the equatorward boundary of the main troughStrong convection flow near SAPS region and disturbance thermospheric wind contributed to the westward drift of the midlatitude depletions
dc.publisherWiley Periodicals, Inc.
dc.subject.otherEPBs
dc.subject.othergeomagnetic storm
dc.subject.otherTIDs
dc.subject.otherPPEF
dc.titleMerging of Storm Time Midlatitude Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148412/1/swe20807.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148412/2/swe20807_am.pdf
dc.identifier.doi10.1029/2018SW002101
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRideout, W., & Coster, A. ( 2006 ). Automated GPS processing for global total electron content data. GPS Solution, 10 ( 3 ), 219 – 228. https://doi.org/10.1007/s10291-006-0029-5
dc.identifier.citedreferenceRam Tulasi, R., Rama Rao, P. V. S., Prasad, D. S. V. V. D., NIranjan, K., Gopi Krishna, S., Sridharan, R., & Ravindran, S. ( 2008 ). Local time dependent response of postsunset ESF during geomagnetic storms. Journal of Geophysical Research, 113, A07310. https://doi.org/10.1029/2007JA012922
dc.identifier.citedreferenceRamsingh, S., Sreekumar, S., Banola, S., Emperumal, K., Tiwari, P., & Kumar, B. S. ( 2015 ). Low‐latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground‐based observations over Indian sector. Journal of Geophysical Research: Space Physics, 120, 10,864 – 10,882. https://doi.org/10.1002/2015JA021509
dc.identifier.citedreferenceCarpenter, D., & Lemaire, J. ( 2004 ). The plasmasphere boundary layer. Annales de Geophysique, 22, 4291 – 4298. https://doi.org/10.5194/angeo-22-4291-2004
dc.identifier.citedreferenceRuohoniemi, J. M., & Baker, K. B. ( 1998 ). Large‐scale imaging of high‐latitude convection with Super Dual Auroral Radar Network HF radar observations. Journal of Geophysical Research, 103, 20,797 – 20,811. https://doi.org/10.1029/98JA01288
dc.identifier.citedreferenceSantos, A. M., Abdu, M. A., Souza, J. R., Sobral, J. H. A., Batista, I. S., & Denardini, C. M. ( 2016 ). Storm time equatorial plasma bubble zonal drift reversal due to disturbance Hall electric field over the Brazilian region. Journal of Geophysical Research: Space Physics, 121, 5594 – 5612. https://doi.org/10.1002/2015JA022179
dc.identifier.citedreferenceScherliess, L., & Fejer, B. G. ( 1997 ). Storm time dependence of equatorial disturbance dynamo zonal electric fields. Journal of Geophysical Research, 102, 24,037 – 24,046. https://doi.org/10.1029/97JA02165
dc.identifier.citedreferenceShen, C., Xu, M., Wang, Y., Chi, Y., & Luo, B. ( 2018 ). Why the shock‐ICME complex structure is important: Learning from the early 2017 September CMEs. Astrophysical Journal, 861, 28. https://doi.org/10.3847/1538-4357/aac204
dc.identifier.citedreferenceShepherd, S. G., & Ruohoniemi, J. M. ( 2000 ). Electrostatic potential patterns in the high‐latitude ionosphere constrained by SuperDARN measurements. Journal of Geophysical Research, 105, 23,005 – 23,014. https://doi.org/10.1029/2000JA000171
dc.identifier.citedreferenceShiokawa, K., Otsuka, Y., Lynn, K. J., Wilkinson, P., & Tsugawa, T. ( 2015 ). Airglow‐imaging observation of plasma bubble disappearance at geomagnetically conjugate points. Earth, Planets and Space, 67, 43. https://doi.org/10.1186/s40623-015-0202-6
dc.identifier.citedreferenceShiokawa, K., Otsuka, Y., Ogawa, T., Balan, N., Igarashi, K., Ridley, A. J., Knipp, D. J., Saito, A., & Yumoto, K. ( 2002 ). A large‐scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. Journal of Geophysical Research, 107, 1088. https://doi.org/10.1029/2001JA000245
dc.identifier.citedreferenceShiokawa, K., Otsuka, Y., Ogawa, T., Kawamura, S., Yamamoto, M., Fukao, S., Nakamura, T., Tsuda, T., Balan, N., Igarashi, K., Lu, G., Saito, A., & Yumoto, K. ( 2003 ). Thermospheric wind during a storm‐time large‐scale traveling ionospheric disturbance. Journal of Geophysical Research, 108, 1423. https://doi.org/10.1029/2003JA010001
dc.identifier.citedreferenceShiokawa, K., Otsuka, Y., Ogawa, T., & Wilkinson, P. ( 2004 ). Time evolution of high‐altitude plasma bubbles imaged at geomagnetic conjugate points. Annales de Geophysique, 22, 3137 – 3143. https://doi.org/10.5194/angeo-22-3137-2004
dc.identifier.citedreferenceShiokawa, K., Otsuka, Y., Tsugawa, T., Ogawa, T., Saito, A., Ohshima, K., Kubota, M., Maruyama, T., Nakamura, T., Yamamoto, M., & Wilkinson, P. ( 2005 ). Geomagnetic conjugate observation of nighttime medium‐scale and large‐scale traveling ionospheric disturbances: FRONT3 campaign. Journal of Geophysical Research, 110, A05303. https://doi.org/10.1029/2004JA010845
dc.identifier.citedreferenceSutton, E. K., Forbes, J. M., & Nerem, R. S. ( 2005 ). Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. Journal of Geophysical Research, 110, A09S40. https://doi.org/10.1029/2004JA010985
dc.identifier.citedreferenceTakahashi, H., Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Abdu, M. A., Otsuka, Y., & Shiokawa, K. ( 2018 ). Equatorial plasma bubble seeding by MSTIDs in the ionosphere. Progress in Earth and Planetary Science, 5, 32. https://doi.org/10.1186/s40645-018-0189-2
dc.identifier.citedreferenceTaori, A., Parihar, N., Ghodpage, R., Dashora, N., Sripathi, S., Kherani, E. A., & Patil, P. T. ( 2015 ). Probing the possible trigger mechanisms of an equatorial plasma bubble event based on multistation optical data. Journal of Geophysical Research: Space Physics, 120, 8835 – 8847. https://doi.org/10.1002/2015JA021541
dc.identifier.citedreferenceTsugawa, T., Otsuka, Y., Coster, A. J., & Saito, A. ( 2007 ). Medium‐scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophysical Research Letters, 34, L22101. https://doi.org/10.1029/2007GL031663
dc.identifier.citedreferenceTsugawa, T., Saito, A., & Otsuka, Y. ( 2004 ). A statistical study of large‐scale traveling ionospheric disturbances using the GPS network in Japan. Journal of Geophysical Research, 109, A06302. https://doi.org/10.1029/2003JA010302
dc.identifier.citedreferenceTsugawa, T., Saito, A., Otsuka, Y., & Yamamoto, M. ( 2003 ). Damping of large‐scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm. Journal of Geophysical Research, 108, 1127. https://doi.org/10.1029/2002JA009433
dc.identifier.citedreferenceTsugawa, T., Shiokawa, K., Otsuka, Y., Ogawa, T., Saito, A., & Nishioka, M. ( 2006 ). Geomagnetic conjugate observations of large‐scale traveling ionospheric disturbances using GPS networks in Japan and Australia. Journal of Geophysical Research, 111, A02302. https://doi.org/10.1029/2005JA011300
dc.identifier.citedreferencevan de Kamp, M., Pokhotelov, D., & Kauristie, K. ( 2014 ). TID characterised using joint effort of incoherent scatter radar and GPS. Annales Geophysicae, 32, 1511 – 1532. https://doi.org/10.5194/angeo-32-1511-2014
dc.identifier.citedreferenceVierinen, J., Coster, A. J., Rideout, W. C., Erickson, P. J., & Norberg, J. ( 2016 ). Statistical framework for estimating GNSS bias. Atmospheric Measurement Techniques, 9, 1303 – 1312. https://doi.org/10.5194/amt-9-1303-2016
dc.identifier.citedreferenceXiong, C., Lühr, H., & Fejer, B. G. ( 2015 ). Global features of the disturbance winds during storm time deduced from CHAMP observations. Journal of Geophysical Research: Space Physics, 120, 5137 – 5150. https://doi.org/10.1002/2015JA021302
dc.identifier.citedreferenceZakharenkova, I., Astafyeva, E., & Cherniak, I. ( 2016 ). GPS and GLONASS observations of large‐scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. Journal of Geophysical Research: Space Physics, 121, 12. https://doi.org/10.1002/2016JA023332
dc.identifier.citedreferenceZhang, S.‐R., Erickson, P. J., Foster, J. C., Holt, J. M., Coster, A. J., Makela, J. J., Noto, J., Meriwether, J. W., Harding, B. J., Riccobono, J., & Kerr, R. B. ( 2015 ). Thermospheric poleward wind surge at midlatitudes during great storm intervals. Geophysical Research Letters, 42, 5132 – 5140. https://doi.org/10.1002/2015GL064836
dc.identifier.citedreferenceZou, S., Lyons, L. R., Nicolls, M. J., Heinselman, C. J., & Mende, S. B. ( 2009 ). Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. Journal of Geophysical Research, 114, A12301. https://doi.org/10.1029/2009JA014259
dc.identifier.citedreferenceAa, E., Huang, W., Liu, S., Ridley, A., Zou, S., Shi, L., Chen, Y., Shen, H., Yuan, T., Li, J., & Wang, T. ( 2018 ). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather, 16, 321 – 331. https://doi.org/10.1002/2017SW001776
dc.identifier.citedreferenceAa, E., Huang, W., Yu, S., Liu, S., Shi, L., Gong, J., Chen, Y., & Shen, H. ( 2015 ). A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation. Journal of Geophysical Research: Space Physics, 120, 5049 – 5061. https://doi.org/10.1002/2015JA021140
dc.identifier.citedreferenceAbadi, P., Otsuka, Y., & Tsugawa, T. ( 2015 ). Effects of pre‐reversal enhancement of E × B drift on the latitudinal extension of plasma bubble in Southeast Asia. Earth, Planets and Space, 67, 74. https://doi.org/10.1186/s40623-015-0246-7
dc.identifier.citedreferenceAbdu, M. A. ( 2005 ). Equatorial ionosphere thermosphere system: Electrodynamics and irregularities. Advances in Space Research, 35, 771 – 787. https://doi.org/10.1016/j.asr.2005.03.150
dc.identifier.citedreferenceAbdu, M. A. ( 2012 ). Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. Journal of Atmospheric and Solar‐Terrestrial Physics, 75, 44 – 56. https://doi.org/10.1016/j.jastp.2011.04.024
dc.identifier.citedreferenceAbdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., & Trivedi, N. B. ( 2003 ). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research, 108, 1449. https://doi.org/10.1029/2002JA009721
dc.identifier.citedreferenceAbdu, M. A., Souza, J. R., Kherani, E. A., Batista, I. S., MacDougall, J. W., & Sobral, J. H. A. ( 2015 ). Wave structure and polarization electric field development in the bottomside F layer leading to postsunset equatorial spread F. Journal of Geophysical Research: Space Physics, 120, 6930 – 6940. https://doi.org/10.1002/2015JA021235
dc.identifier.citedreferenceAfraimovich, E. L., Kosogorov, E. A., Leonovich, L. A., Palamartchouk, K. S., Perevalova, N. P., & Pirog, O. M. ( 2000 ). Observation of large‐scale traveling ionospheric disturbances of auroral origin by global GPS networks. Earth Planets, and Space, 52, 669 – 674. https://doi.org/10.1186/BF03352261
dc.identifier.citedreferenceAfraimovich, E. L., Voeykov, S. V., Perevalova, N. P., & Ratovsky, K. G. ( 2008 ). Large‐scale traveling ionospheric disturbances of auroral origin according to the data of the GPS network and ionosondes. Advances in Space Research, 42, 1213 – 1217. https://doi.org/10.1016/j.asr.2007.11.023
dc.identifier.citedreferenceBasu, S., Basu, S., Groves, K. M., Yeh, H.‐C., Su, S.‐Y., Rich, F. J., Sultan, P. J., & Keskinen, M. J. ( 2001 ). Response of the equatorial ionosphere in the South Atlantic Region to the Great Magnetic Storm of July 15, 2000. Geophysical Research Letters, 28, 3577 – 3580. https://doi.org/10.1029/2001GL013259
dc.identifier.citedreferenceBasu, S., Basu, S., Rich, F. J., Groves, K. M., MacKenzie, E., Coker, C., Sahai, Y., Fagundes, P. R., & Becker‐Guedes, F. ( 2007 ). Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. Journal of Geophysical Research, 112, A08308. https://doi.org/10.1029/2006JA012192
dc.identifier.citedreferenceBowman, G. G. ( 1992 ). Some aspects of large‐scale travelling ionospheric disturbances. Planetary and Space Science, 40, 829 – 845. https://doi.org/10.1016/0032-0633(92)90110-A
dc.identifier.citedreferenceBowman, G. G., & Mortimer, I. K. ( 2011 ). Some aspects of large‐scale travelling ionospheric disturbances which originate at conjugate locations in auroral zones, cross the equator and sometimes encircle the earth. Annales de Geophysique, 29, 2203 – 2210. https://doi.org/10.5194/angeo-29-2203-2011
dc.identifier.citedreferenceCarter, B. A., Yizengaw, E., Pradipta, R., Retterer, J. M., Groves, K., Valladares, C., Caton, R., Bridgwood, C., Norman, R., & Zhang, K. ( 2016 ). Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm. Journal of Geophysical Research: Space Physics, 121, 894 – 905. https://doi.org/10.1002/2015JA022194
dc.identifier.citedreferenceCherniak, I., Krankowski, A., & Zakharenkova, I. ( 2014 ). Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Science, 49, 653 – 662. https://doi.org/10.1002/2014RS005433
dc.identifier.citedreferenceCherniak, I., & Zakharenkova, I. ( 2016 ). First observations of super plasma bubbles in Europe. Geophysical Research Letters, 43, 11. https://doi.org/10.1002/2016GL071421
dc.identifier.citedreferenceDing, F., Wan, W., Li, Q., Zhang, R., Song, Q., Ning, B., Liu, L., Zhao, B., & Xiong, B. ( 2014 ). Comparative climatological study of large‐scale traveling ionospheric disturbances over North America and China in 2011–2012. Journal of Geophysical Research: Space Physics, 119, 519 – 529. https://doi.org/10.1002/2013JA019523
dc.identifier.citedreferenceDing, F., Wan, W., Liu, L., Afraimovich, E. L., Voeykov, S. V., & Perevalova, N. P. ( 2008 ). A statistical study of large‐scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. Journal of Geophysical Research, 113, A00A01. https://doi.org/10.1029/2008JA013037
dc.identifier.citedreferenceDing, F., Wan, W., Ning, B., & Wang, M. ( 2007 ). Large‐scale traveling ionospheric disturbances observed by GPS total electron content during the magnetic storm of 29–30 October 2003. Journal of Geophysical Research, 112, A06309. https://doi.org/10.1029/2006JA012013
dc.identifier.citedreferenceDing, F., Wan, W., Ning, B., Zhao, B., Li, Q., Zhang, R., Xiong, B., & Song, Q. ( 2012 ). Two‐dimensional imaging of large‐scale traveling ionospheric disturbances over China based on GPS data. Journal of Geophysical Research, 117, A08318. https://doi.org/10.1029/2012JA017546
dc.identifier.citedreferenceDing, F., Wan, W., & Yuan, H. ( 2003 ). The influence of background winds and attenuation on the propagation of atmospheric gravity waves. Journal of Atmospheric and Solar‐Terrestrial Physics, 65, 857 – 869. https://doi.org/10.1016/S1364-6826(03)00090-7
dc.identifier.citedreferenceEbihara, Y., & Tanaka, T. ( 2015 ). Substorm simulation: Insight into the mechanisms of initial brightening. Journal of Geophysical Research: Space Physics, 120, 7270 – 7288. https://doi.org/10.1002/2015JA021516
dc.identifier.citedreferenceFoster, J. C., & Burke, W. J. ( 2002 ). SAPS: A new categorization for sub‐auroral electric fields. Eos, Transactions American Geophysical Union, 83, 393. https://doi.org/10.1029/2002EO000289
dc.identifier.citedreferenceFoster, J. C., & Rich, F. J. ( 1998 ). Prompt midlatitude electric field effects during severe geomagnetic storms. Journal of Geophysical Research, 103, 26,367 – 26,372. https://doi.org/10.1029/97JA03057
dc.identifier.citedreferenceFu, H. S., Tu, J., Cao, J. B., Song, P., Reinisch, B. W., Gallagher, D. L., & Yang, B. ( 2010 ). IMAGE and DMSP observations of a density trough inside the plasmasphere. Journal of Geophysical Research, 115, A07227. https://doi.org/10.1029/2009JA015104
dc.identifier.citedreferenceHayashi, H., Nishitani, N., Ogawa, T., Otsuka, Y., Tsugawa, T., Hosokawa, K., & Saito, A. ( 2010 ). Large‐scale traveling ionospheric disturbance observed by superDARN Hokkaido HF radar and GPS networks on 15 December 2006. Journal of Geophysical Research, 115, A06309. https://doi.org/10.1029/2009JA014297
dc.identifier.citedreferenceHines, C. O. ( 1960 ). Internal atmospheric gravity waves at ionospheric heights. Canadian Journal de Physique, 38, 1441. https://doi.org/10.1139/p60-150
dc.identifier.citedreferenceHorwitz, J. L., Comfort, R. H., & Chappell, C. R. ( 1990 ). A statistical characterization of plasmasphere density structure and boundary locations. Journal of Geophysical Research, 95, 7937 – 7947. https://doi.org/10.1029/JA095iA06p07937
dc.identifier.citedreferenceHuang, C.‐S., Foster, J. C., & Sahai, Y. ( 2007 ). Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause. Journal of Geophysical Research, 112, A05315. https://doi.org/10.1029/2007JA012307
dc.identifier.citedreferenceHuang, C.‐S., Rich, F. J., & Burke, W. J. ( 2010 ). Storm time electric fields in the equatorial ionosphere observed near the dusk meridian. Journal of Geophysical Research, 115, A08313. https://doi.org/10.1029/2009JA015150
dc.identifier.citedreferenceHuba, J. D., & Joyce, G. ( 2007 ). Equatorial spread F modeling: Multiple bifurcated structures, secondary instabilities, large density ‘bite‐outs,’ and supersonic flows. Geophysical Research Letters, 34, L07105. https://doi.org/10.1029/2006GL028519
dc.identifier.citedreferenceHunsucker, R. D. ( 1982 ). Atmospheric gravity waves generated in the high‐latitude ionosphere: A review. Reviews of Geophysics and Space Physics, 20, 293 – 315. https://doi.org/10.1029/RG020i002p00293
dc.identifier.citedreferenceJacobson, A. R., & Carlos, R. C. ( 1989 ). Coherent‐array HF Doppler sounding of traveling ionospheric disturbances. I—Basic technique. Journal of Atmospheric and Terrestrial Physics, 51, 297 – 309. https://doi.org/10.1016/0021-9169(89)90081-0
dc.identifier.citedreferenceJin, H., Zou, S., Chen, G., Yan, C., Zhang, G., & Yang, S. ( 2018 ). Formation and evolution of low‐latitude F region field‐aligned irregularities during the 7‐8 September 2017 Storm: Hainan coherent scatter phased array radar and digisonde observations. Space Weather, 16, 648 – 659. https://doi.org/10.1029/2018SW001865
dc.identifier.citedreferenceMoldwin, M., & Zou, S. ( 2013 ). The importance of the plasmasphere boundary layer for understanding inner magnetosphere dynamics (pp. 321 – 328 ). American Geophysical Union. https://doi.org/10.1029/2012GM001323
dc.identifier.citedreferenceKatamzi‐Joseph, Z. T., Habarulema, J. B., & Hernández‐Pajares, M. ( 2017 ). Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001. Space Weather, 15, 1177 – 1190. https://doi.org/10.1002/2017SW001674
dc.identifier.citedreferenceKelley, M. C., Makela, J. J., Paxton, L. J., Kamalabadi, F., Comberiate, J. M., & Kil, H. ( 2003 ). The first coordinated ground‐ and space‐based optical observations of equatorial plasma bubbles. Geophysical Research Letters, 30 ( 14 ), 1766. https://doi.org/10.1029/2003GL017301
dc.identifier.citedreferenceKil, H. ( 2015 ). The morphology of equatorial plasma bubbles—A review. Journal of Astronomy and Space Sciences, 32, 13 – 19. https://doi.org/10.5140/JASS.2015.32.1.13
dc.identifier.citedreferenceKil, H., Heelis, R. A., Paxton, L. J., & Oh, S.‐J. ( 2009 ). Formation of a plasma depletion shell in the equatorial ionosphere. Journal of Geophysical Research, 114, A11302. https://doi.org/10.1029/2009JA014369
dc.identifier.citedreferenceKirchengast, G., Hocke, K., & Schlegel, K. ( 1996 ). The gravity wave‐TID relationship: Insight via theoretical model‐EISCAT data comparison. Journal of Atmospheric and Terrestrial Physics, 58, 233 – 243. https://doi.org/10.1016/0021-9169(95)00032-1
dc.identifier.citedreferenceKrall, J., Huba, J. D., Ossakow, S. L., Joyce, G., Makela, J. J., Miller, E. S., & Kelley, M. C. ( 2011 ). Modeling of equatorial plasma bubbles triggered by non‐equatorial traveling ionospheric disturbances. Geophysical Research Letters, 38, L08103. https://doi.org/10.1029/2011GL046890
dc.identifier.citedreferenceLei, J., Huang, F., Chen, X., Zhong, J., Ren, D., Wang, W., Yue, X., Luan, X., Jia, M., Dou, X., Hu, L., Ning, B., Owolabi, C., Chen, J., Li, G., & Xue, X. ( 2018 ). Was magnetic storm the only driver of the long‐duration enhancements of daytime total electron content in the Asian‐Australian sector between 7 and 12 September 2017. Journal of Geophysical Research: Space Physics, 123, 3217 – 3232. https://doi.org/10.1029/2017JA025166
dc.identifier.citedreferenceLi, G., Ning, B., Liu, L., Wan, W., & Liu, J. Y. ( 2009 ). Effect of magnetic activity on plasma bubbles over equatorial and low‐latitude regions in East Asia. Annales de Geophysique, 27, 303 – 312. https://doi.org/10.5194/angeo-27-303-2009
dc.identifier.citedreferenceLi, G., Ning, B., Liu, L., Zhao, B., Yue, X., Su, S.‐Y., & Venkatraman, S. ( 2008 ). Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal E × B drifts at solar maximum. Radio Science, 43, RS4005. https://doi.org/10.1029/2007RS003760
dc.identifier.citedreferenceLi, G., Ning, B., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., Wu, J., & Chen, J. ( 2018 ). Storm‐enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W on 7–8 September 2017. Journal of Geophysical Research: Space Physics, 123, 1 – 16. https://doi.org/10.1029/2018JA025871
dc.identifier.citedreferenceLi, G., Ning, B., Zhao, B., Liu, L., Wan, W., Ding, F., Xu, J. S., Liu, J. Y., & Yumoto, K. ( 2009 ). Characterizing the 10 November 2004 storm‐time middle‐latitude plasma bubble event in Southeast Asia using multi‐instrument observations. Journal of Geophysical Research, 114, A07304. https://doi.org/10.1029/2009JA014057
dc.identifier.citedreferenceLi, G., Otsuka, Y., Ning, B., Abdu, M. A., Yamamoto, M., Wan, W., Liu, L., & Abadi, P. ( 2016 ). Enhanced ionospheric plasma bubble generation in more active ITCZ. Geophysical Research Letters, 43, 2389 – 2395. https://doi.org/10.1002/2016GL068145
dc.identifier.citedreferenceLyons, L. R., Zou, S., Heinselman, C. J., Nicolls, M. J., & Anderson, P. C. ( 2009 ). Poker flat radar observations of the magnetosphere‐ionosphere coupling electrodynamics of the earthward penetrating plasma sheet following convection enhancements. Journal of Atmospheric and Terrestrial Physics, 71, 717 – 728. https://doi.org/10.1016/j.jastp.2008.09.025
dc.identifier.citedreferenceMa, G., & Maruyama, T. ( 2006 ). A super bubble detected by dense GPS network at east Asian longitudes. Geophysical Research Letters, 33, L21103. https://doi.org/10.1029/2006GL027512
dc.identifier.citedreferenceMakela, J. J., & Kelley, M. C. ( 2003 ). Field‐aligned 777.4‐nm composite airglow images of equatorial plasma depletions. Geophysical Research Letters, 30 ( 8 ), 1442. https://doi.org/10.1029/2003GL017106
dc.identifier.citedreferenceManoj, C., & Maus, S. ( 2012 ). A real‐time forecast service for the ionospheric equatorial zonal electric field. Space Weather, 10, S09002. https://doi.org/10.1029/2012SW000825
dc.identifier.citedreferenceMartinis, C., Baumgardner, J., Mendillo, M., Wroten, J., Coster, A., & Paxton, L. ( 2015 ). The night when the auroral and equatorial ionospheres converged. Journal of Geophysical Research: Space Physics, 120, 8085 – 8095. https://doi.org/10.1002/2015JA021555
dc.identifier.citedreferenceMartinis, C., & Mendillo, M. ( 2007 ). Equatorial spread F ‐related airglow depletions at Arecibo and conjugate observations. Journal of Geophysical Research, 112, A10310. https://doi.org/10.1029/2007JA012403
dc.identifier.citedreferenceMartinis, C. R., Mendillo, M. J., & Aarons, J. ( 2005 ). Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. Journal of Geophysical Research, 110, A07306. https://doi.org/10.1029/2003JA010362
dc.identifier.citedreferenceMendillo, M., Hickey, D., Martinis, C., Wroten, J., & Baumgardner, J. ( 2018 ). Space weather nowcasting for area‐denied locations: Testing all‐sky imaging applications at geomagnetic conjugate points. Space Weather, 16, 47 – 56. https://doi.org/10.1002/2017SW001741
dc.identifier.citedreferenceMendillo, M., Zesta, E., Shodhan, S., Sultan, P. J., Doe, R., Sahai, Y., & Baumgardner, J. ( 2005 ). Observations and modeling of the coupled latitude‐altitude patterns of equatorial plasma depletions. Journal of Geophysical Research, 110, A09303. https://doi.org/10.1029/2005JA011157
dc.identifier.citedreferenceNicolls, M. J., & Heinselman, C. J. ( 2007 ). Three‐dimensional measurements of traveling ionospheric disturbances with the Poker Flat Incoherent Scatter Radar. Geophysical Research Letters, 34, L21104. https://doi.org/10.1029/2007GL031506
dc.identifier.citedreferenceNicolls, M. J., Kelley, M. C., Coster, A. J., González, S. A., & Makela, J. J. ( 2004 ). Imaging the structure of a large‐scale TID using ISR and TEC data. Geophysical Research Letters, 31, L09812. https://doi.org/10.1029/2004GL019797
dc.identifier.citedreferenceOber, D. M., Horwitz, J. L., & Gallagher, D. L. ( 1997 ). Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events. Journal of Geophysical Research, 102, 14,595 – 14,602. https://doi.org/10.1029/97JA01046
dc.identifier.citedreferenceOgawa, T., Sagawa, E., Otsuka, Y., Shiokawa, K., Immel, T. I., Mende, S. B., & Wilkinson, P. ( 2005 ). Simultaneous ground‐ and satellite‐based airglow observations of geomagnetic conjugate plasma bubbles in the equatorial anomaly. Earth, Planets and Space, 57, 385 – 392. https://doi.org/10.1186/BF03351822
dc.identifier.citedreferenceOtsuka, Y., Shiokawa, K., & Ogawa, T. ( 2012 ). Disappearance of equatorial plasma bubble after interaction with mid‐latitude medium‐scale traveling ionospheric disturbance. Geophysical Research Letters, 39, L14105. https://doi.org/10.1029/2012GL052286
dc.identifier.citedreferenceOtsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. ( 2002 ). Geomagnetic conjugate observations of equatorial airglow depletions. Geophysical Research Letters, 29 ( 15 ), 1753. https://doi.org/10.1029/2002GL015347
dc.identifier.citedreferenceOtsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., & Tsugawa, T. ( 2013 ). GPS observations of medium‐scale traveling ionospheric disturbances over Europe. Annales de Geophysique, 31, 163 – 172. https://doi.org/10.5194/angeo-31-163-2013
dc.identifier.citedreferencePi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. ( 1997 ). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophysical Research Letters, 24, 2283 – 2286. https://doi.org/10.1029/97GL02273
dc.identifier.citedreferencePradipta, R., Valladares, C. E., Carter, B. A., & Doherty, P. H. ( 2016 ). Interhemispheric propagation and interactions of auroral traveling ionospheric disturbances near the equator. Journal of Geophysical Research: Space Physics, 121, 2462 – 2474. https://doi.org/10.1002/2015JA022043
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.