Show simple item record

Acarbose improves health and lifespan in aging HET3 mice

dc.contributor.authorHarrison, David E.
dc.contributor.authorStrong, Randy
dc.contributor.authorAlavez, Silvestre
dc.contributor.authorAstle, Clinton Michael
dc.contributor.authorDiGiovanni, John
dc.contributor.authorFernandez, Elizabeth
dc.contributor.authorFlurkey, Kevin
dc.contributor.authorGarratt, Michael
dc.contributor.authorGelfond, Jonathan A. L.
dc.contributor.authorJavors, Martin A.
dc.contributor.authorLevi, Moshe
dc.contributor.authorLithgow, Gordon J.
dc.contributor.authorMacchiarini, Francesca
dc.contributor.authorNelson, James F.
dc.contributor.authorSukoff Rizzo, Stacey J.
dc.contributor.authorSlaga, Thomas J.
dc.contributor.authorStearns, Tim
dc.contributor.authorWilkinson, John Erby
dc.contributor.authorMiller, Richard A.
dc.date.accessioned2019-04-02T18:11:55Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationHarrison, David E.; Strong, Randy; Alavez, Silvestre; Astle, Clinton Michael; DiGiovanni, John; Fernandez, Elizabeth; Flurkey, Kevin; Garratt, Michael; Gelfond, Jonathan A. L.; Javors, Martin A.; Levi, Moshe; Lithgow, Gordon J.; Macchiarini, Francesca; Nelson, James F.; Sukoff Rizzo, Stacey J.; Slaga, Thomas J.; Stearns, Tim; Wilkinson, John Erby; Miller, Richard A. (2019). "Acarbose improves health and lifespan in aging HET3 mice." Aging Cell 18(2): n/a-n/a.
dc.identifier.issn1474-9718
dc.identifier.issn1474-9726
dc.identifier.urihttps://hdl.handle.net/2027.42/148418
dc.description.abstractTo follow‐up on our previous report that acarbose (ACA), a drug that blocks postprandial glucose spikes, increases mouse lifespan, we studied ACA at three doses: 400, 1,000 (the original dose), and 2,500 ppm, using genetically heterogeneous mice at three sites. Each dose led to a significant change (by log‐rank test) in both sexes, with larger effects in males, consistent with the original report. There were no significant differences among the three doses. The two higher doses produced 16% or 17% increases in median longevity of males, but only 4% or 5% increases in females. Age at the 90th percentile was increased significantly (8%–11%) in males at each dose, but was significantly increased (3%) in females only at 1,000 ppm. The sex effect on longevity is not explained simply by weight or fat mass, which were reduced by ACA more in females than in males. ACA at 1,000 ppm reduced lung tumors in males, diminished liver degeneration in both sexes and glomerulosclerosis in females, reduced blood glucose responses to refeeding in males, and improved rotarod performance in aging females, but not males. Three other interventions were also tested: ursolic acid, 2‐(2‐hydroxyphenyl) benzothiazole (HBX), and INT‐767; none of these affected lifespan at the doses tested. The acarbose results confirm and extend our original report, prompt further attention to the effects of transient periods of high blood glucose on aging and the diseases of aging, including cancer, and should motivate studies of acarbose and other glucose‐control drugs in humans.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlifespan
dc.subject.otherhealth measures
dc.subject.otherheterogeneous mice
dc.subject.otheracarbose
dc.titleAcarbose improves health and lifespan in aging HET3 mice
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148418/1/acel12898.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148418/2/acel12898_am.pdf
dc.identifier.doi10.1111/acel.12898
dc.identifier.sourceAging Cell
dc.identifier.citedreferenceReifsnyder, P. C., Flurkey, K., Te, A., & Harrison, D. E. ( 2016 ). Rapamycin treatment benefits glucose metabolism in mouse models of type 2 diabetes. Aging, 8, 3120 – 3130. https://doi.org/10.18632/aging.101117
dc.identifier.citedreferenceAlavez, S., Vantipalli, M. C., Zucker, D. J., Klang, I. M., & Lithgow, G. J. ( 2011 ). Amyloid‐binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature, 472, 226 – 229. https://doi.org/10.1038/nature09873
dc.identifier.citedreferenceArcher, V. E. ( 2003 ). Does dietary sugar and fat influence longevity? Medical Hypotheses, 60 ( 6 ), 924 – 929. https://doi.org/10.1016/S0306-9877(03)00097-5
dc.identifier.citedreferenceFiorucci, S., Mencarelli, A., Palladino, G., & Cipriani, S. ( 2009 ). Bile‐acid‐activated receptors: Targeting TGR5 and farnesoid‐X‐receptor in lipid and glucose disorders. Trends in Pharmacological Sciences, 30 ( 11 ), 570 – 580. https://doi.org/10.1016/j.tips.2009.08.001
dc.identifier.citedreferenceFlurkey, K., Astle, C. M., & Harrison, D. E. ( 2010 ). Life extension by diet restriction and N‐Acetyl‐L‐Cysteine in genetically heterogeneous HET3 Mice. Journals of Gerontology, Series A, Biological Sciences and Medical Sciences, 65 ( 12 ), 1275 – 1284. https://doi.org/10.1093/gerona/glq155
dc.identifier.citedreferenceFrantz, S., Calvillo, L., Tillmanns, J., Elbing, I., Dienesch, C., Bischoff, H., … Bauersachs, J. ( 2005 ). Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: Prevention by the alpha‐glucosidase inhibitor acarbose. Federation of American Societies for Experimental Biology Journal, 19 ( 6 ), 591 – 593. https://doi.org/10.1096/fj.04-2459fje
dc.identifier.citedreferenceGarratt, M., Bower, B., Garcia, G. G., & Miller, R. A. ( 2017 ). Sex‐differences in lifespan‐extension with acarbose and 17‐α estradiol: Gonadal hormones underlie male‐specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell, 16, 1256 – 1266. https://doi.org/10.1111/acel.12656
dc.identifier.citedreferenceGarratt, M., Lagerborg, K. A., Tsai, Y., Galecki, A., Jain, M., & Miller, R. A. ( 2018 ). Male lifespan extension with 17‐a estradiol is linked to a sex specific metabolomic response modulated by gonadal hormones in mice. Aging Cell, 17, e12786. https://doi.org/10.1111/acel.12786
dc.identifier.citedreferenceGems, D. ( 2007 ). Long‐lived dwarf mice: Are bile acids a longevity signal? Aging Cell, 6 ( 4 ), 421 – 423. https://doi.org/10.1111/j.1474-9726.2007.00309.x
dc.identifier.citedreferenceGong, H., Qian, H., Ertl, R., Astle, C. M., Wang, G. G., Harrison, D. E., & Xu, X. ( 2015 ). Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain. Oncotarget, 6, 15882 – 15890. https://doi.org/10.18632/oncotarget.4137
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Allison, D. B., Ames, B. N., Astle, C. M., Atamna, H., … Miller, R. A. ( 2014 ). Acarbose, 17‐α‐estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell, 13, 273 – 282. https://doi.org/10.1111/acel.12170
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., … Miller, R. A. ( 2009 ). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460, 392 – 395. https://doi.org/10.1038/nature08221
dc.identifier.citedreferenceHylemon, P. B., Zhou, H., Pandak, W. M., Ren, S., Gil, G., & Dent, P. ( 2009 ). Bile acids as regulatory molecules. Journal of Lipid Research, 50 ( 8 ), 1509 – 1520. https://doi.org/10.1194/jlr.R900007-JLR200
dc.identifier.citedreferenceJones, B. J., & Roberts, D. J. ( 1968 ). The quantitative measurement of motor inco‐ordination in naive mice using an acelerating rotarod. Journal of Pharmacy and Pharmacology, 20, 302 – 304. https://doi.org/10.1111/j.2042-7158.1968.tb09743.x
dc.identifier.citedreferenceKunkel, S. D., Elmore, C. J., Bongers, K. S., Ebert, S. M., Fox, D. K., Dyle, M. C., … Adams, C. M. ( 2012 ). Ursolic acid increases skeletal muscle and brown fat and decreases diet‐induced obesity, glucose intolerance and fatty liver disease. PLoS One, 7 ( 6 ), e39332. https://doi.org/10.1371/journal.pone.0039332
dc.identifier.citedreferenceLamming, D. W., Ye, L., Astle, C. M., Baur, J. A., Sabatini, D. M., & Harrison, D. E. ( 2013 ). Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell, 12 ( 4 ), 712 – 718. https://doi.org/10.1111/acel.12097
dc.identifier.citedreferenceLu, J., Wu, D. M., Zheng, Y. L., Hu, B., Cheng, W., Zhang, Z. F., & Shan, Q. ( 2011 ). Ursolic acid improves high fat diet‐induced cognitive impairments by blocking endoplasmic reticulum stress and IkappaB kinase beta/nuclear factor‐kappaB‐mediated inflammatory pathways in mice. Brain, Behavior, and Immunity, 25 ( 8 ), 1658 – 1667. https://doi.org/10.1016/j.bbi.2011.06.009
dc.identifier.citedreferenceLu, J., Zheng, Y. L., Wu, D. M., Luo, L., Sun, D. X., & Shan, Q. ( 2007 ). Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D‐galactose. Biochemical Pharmacology, 74 ( 7 ), 1078 – 1090. https://doi.org/10.1016/j.bcp.2007.07.007
dc.identifier.citedreferenceMiller, R. A., Harrison, D. E., Astle, C. M., Baur, J. A., Boyd, A. R., de Cabo, R., … Strong, R. ( 2011 ). Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. Journals of Gerontology, Series A, Biological Sciences and Medical Sciences, 66, 191 – 201. https://doi.org/10.1093/gerona/glq178
dc.identifier.citedreferenceMiller, R. A., Harrison, D. E., Astle, C. M., Fernandez, E., Flurkey, K., Han, M., … Strong, R. ( 2014 ). Rapamycin‐mediated lifespan increase in mice is dose and sex‐dependent and metabolically distinct from dietary restriction. Aging Cell, 13, 468 – 477. https://doi.org/10.1111/acel.12194
dc.identifier.citedreferenceMiyamura, M., Schnell, O., Yamashita, C., Yoshioka, T., Matsumoto, C., Mori, T., … Hayashi, T. ( 2010 ). Effects of acarbose on the acceleration of postprandial hyperglycemia‐induced pathological changes induced by intermittent hypoxia in lean mice. Journal of Pharmacological Sciences, 114 ( 1 ), 32 – 40. https://doi.org/10.1254/jphs.10014FP
dc.identifier.citedreferenceReifsnyder, P. C., Doty, R., & Harrison, D. E. ( 2015 ). Rapamycin ameliorates nephropathy despite elevating hyperglycemia in a polygenic mouse model of type 2 diabetes, NONcNZO10/LtJ. PLoS One, 9 ( 12 ), e114324. https://doi.org/10.1371/journal.pone.0114324. Erratum in https://doi.org/10.1371/journal.pone.0119748
dc.identifier.citedreferenceBalfour, J. A., & McTavish, D. ( 1993 ). Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs, 46 ( 6 ), 1025 – 1054. Erratum: https://doi.org/10.1007/BF03259118
dc.identifier.citedreferenceReifsnyder, P. C., Ryzhov, S., Flurkey, K., Anunciado‐Koza, R. P., Mills, I., Harrison, D. E., & Koza, R. A. ( 2017 ). Cardioprotective effects of dietary rapamycin on adult female C57BLKS/J‐ Lepr db mice. Annals of the New York Academy of Sciences, 1418 ( 1 ), 106 – 117. https://doi.org/10.1111/nyas.13557
dc.identifier.citedreferenceRizzo, G., Passeri, D., De Franco, F., Ciaccioli, G., Donadio, L., Rizzo, G., … Adorini, L. ( 2010 ). Functional characterization of the semisynthetic bile acid derivative INT‐767, a dual farnesoid X receptor and TGR5 agonist. Molecular Pharmacology, 78 ( 4 ), 617 – 630. https://doi.org/10.1124/mol.110.064501
dc.identifier.citedreferenceRoderick, T. H. ( 1963 ). Selection for radiation resistance in mice. Genetics, 48, 205 – 216.
dc.identifier.citedreferenceRuppin, H., Hagel, J., Feuerbach, W., Schutt, H., Pichl, J., Hillebrand, I., … Domschke, W. ( 1988 ). Fate and effects of the α‐glucosidase inhibitor acarbose in humans: An intestinal slow‐marker perfusion study. Gastroenterology, 95, 93 – 99. https://doi.org/10.1016/0016-5085(88)90295-8
dc.identifier.citedreferenceSmith, B. J., Miller, R. A., Ericsson, A. C., Harrison, D. E., Strong, R., Submitted, S. T. M., & Apr,, ( 2018 ). Changes in the gut microbiota and fermentation products associated with enhanced longevity in acarbose‐treated mice. Microbiome. bioRxiv 311456, https://doi.org/10.1101/311456
dc.identifier.citedreferenceStrong, R., Miller, R. A., Antebi, A., Astle, C. M., Bogue, M., Denzel, M., … Harrison, D. E. ( 2016 ). Longer lifespan in male mice treated with a weakly‐estrogenic agonist, an antioxidant, an α‐glucosidase inhibitor or a Nrf2‐inducer. Aging Cell, 15, 872 – 884. https://doi.org/10.1111/acel.12496
dc.identifier.citedreferenceStrong, R., Miller, R. A., Astle, C. M., Baur, J. A., de Cabo, R., Fernandez, E., … Harrison, D. E. ( 2013 ). Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium chain triglyceride oil on lifespan of genetically heterogeneous mice. Journals of Gerontology, Series A, Biological Sciences and Medical Sciences, 68, 6 – 16. https://doi.org/10.1093/gerona/gls070
dc.identifier.citedreferenceStrong, R., Miller, R. A., Astle, C. M., Floyd, R. A., Flurkey, K., Hensley, K. L., … Harrison, D. E. ( 2008 ). Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell, 7, 641 – 650. https://doi.org/10.1111/j.1474-9726.2008.00414.x
dc.identifier.citedreferenceWang, C., Li, Q., Redden, D. T., Weindruch, R., & Allison, D. B. ( 2004 ). Statistical methods for testing effects on “maximum lifespan”. Mechanisms of Ageing and Development, 125, 629 – 632. https://doi.org/10.1016/j.mad.2004.07.003
dc.identifier.citedreferenceWang, X. X., Luo, Y., Wang, D., Adorini, L., Pruzanski, M., Dobrinskikh, E., & Levi, M. ( 2017 ). A dual agonist of farnesoid X receptor (FXR) and the G protein–coupled receptor TGR5, INT‐767, reverses age‐related kidney disease in mice. Journal of Biological Chemistry, 292 ( 29 ), 12018 – 12024. https://doi.org/10.1074/jbc.C117.794982
dc.identifier.citedreferenceWilkinson, J. E., Burmeister, L., Brooks, S. V., Carames, B., Friedline, S., Harrison, D. E., … Miller, R. A. ( 2012 ). Rapamycin slows aging in mice. Aging Cell, 11, 675 – 682. https://doi.org/10.1111/j.1474-9726.2012.00832
dc.identifier.citedreferenceYamamoto, M., & Otsuki, M. ( 2006 ). Effect of inhibition of alpha‐glucosidase on age‐related glucose intolerance and pancreatic atrophy in rats. Metabolism, 55 ( 4 ), 533 – 540. https://doi.org/10.1016/j.metabol.2005.11.007
dc.identifier.citedreferenceYuan, R., Meng, Q., Nautiyal, J., Flurkey, K., Tsaih, S. W., Krier, R., … Paigen, B. ( 2012 ). Genetic co‐regulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 21 ), 8224 – 8229. https://doi.org/10.1073/pnas.1121113109
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.