Show simple item record

Smart Supramolecular â Trojan Horseâ â Inspired Nanogels for Realizing Lightâ Triggered Nuclear Drug Influx in Drugâ Resistant Cancer Cells

dc.contributor.authorChen, Xiaokai
dc.contributor.authorZhang, Xiaodong
dc.contributor.authorGuo, Yuxin
dc.contributor.authorZhu, Ya‐xuan
dc.contributor.authorLiu, Xiaoyang
dc.contributor.authorChen, Zhan
dc.contributor.authorWu, Fu‐gen
dc.date.accessioned2019-04-02T18:11:58Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03
dc.identifier.citationChen, Xiaokai; Zhang, Xiaodong; Guo, Yuxin; Zhu, Ya‐xuan ; Liu, Xiaoyang; Chen, Zhan; Wu, Fu‐gen (2019). "Smart Supramolecular â Trojan Horseâ â Inspired Nanogels for Realizing Lightâ Triggered Nuclear Drug Influx in Drugâ Resistant Cancer Cells." Advanced Functional Materials 29(13): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/148419
dc.description.abstractEfficient nuclear delivery of anticancer drugs evading drug efflux transporters (DETs) on the plasma and nuclear membranes of multidrugâ resistant cancer cells is highly challenging. Here, smart nanogels are designed via a oneâ step selfâ assembly of three functional components including a biocompatible copolymer, a fluorescent organosilica nanodot, and a photodegradable nearâ infrared (NIR) dye indocyanine green (ICG). The rationally designed nanogels have high drug encapsulation efficiency (â 99%) for anticancer drug doxorubicin (Dox), selfâ traceability for bioimaging, proper size for passive tumor targeting, prolonged blood circulation time for enhanced drug accumulation in tumor, and photocontrolled disassemblability. Moreover, the Doxâ loaded nanogels can effectively kill multidrugâ resistant cells via two steps: 1) They behave like a â Trojan horseâ to escape from the DETs on the plasma membrane for efficiently transporting the anticancer â soldierâ (Dox) into the cytoplasm and preventing the drugs from being excreted from the cells; 2) Upon NIR light irradiation, the photodegradation of ICG leads to the disassembly of the nanogels to release massive Dox molecules, which can evade the DETs on the nuclear membrane to exert their intranuclear efficacy in multidrugâ resistant cells. Combined with their excellent biocompatibility, the nanogels may provide an alternative solution for overcoming cancer multidrug resistance.A smart supramolecular nanogel is constructed to circumvent cancer multidrug resistance. The nanogel behaves like a â Trojan horseâ to escape from the drug efflux transporters (DETs) on the plasma membrane for efficiently transporting drugs into the cytoplasm. Meanwhile, through a lightâ triggered strategy, massive drugs can be quickly released, thus realizing nuclear drug influx by evading the DETs on the nuclear membrane.
dc.publisherWiley Periodicals, Inc.
dc.subject.othernuclear delivery
dc.subject.othersiliconâ based nanomaterials
dc.subject.othersupramolecular assembly
dc.subject.otherphotocontrollable drug release
dc.subject.othercancer theranostics
dc.titleSmart Supramolecular â Trojan Horseâ â Inspired Nanogels for Realizing Lightâ Triggered Nuclear Drug Influx in Drugâ Resistant Cancer Cells
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148419/1/adfm201807772_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148419/2/adfm201807772.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148419/3/adfm201807772-sup-0001-S1.pdf
dc.identifier.doi10.1002/adfm.201807772
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceX. K. Chen, X. D. Zhang, H. Y. Wang, Z. Chen, F. G. Wu, Langmuir 2016, 32, 10126.
dc.identifier.citedreferencea) L. M. Wang, Q. Sun, X. Wang, T. Wen, J. J. Yin, P. Y. Wang, R. Bai, X. Q. Zhang, L. H. Zhang, A. H. Lu, C. Y. Chen, J. Am. Chem. Soc. 2015, 137, 1947; b) L. P. Qiu, T. Chen, I. Ocsoy, E. Yasun, C. C. Wu, G. Z. Zhu, M. X. You, D. Han, J. H. Jiang, R. Q. Yu, W. H. Tan, Nano Lett. 2015, 15, 457; c) X. Wei, Y. Wang, X. Xiong, X. Guo, L. Zhang, X. B. Zhang, S. B. Zhou, Adv. Funct. Mater. 2016, 26, 8266; d) R. L. Zhang, S. Gao, Z. L. Wang, D. Han, L. Liu, Q. J. Ma, W. H. Tan, J. Tian, X. Y. Chen, Adv. Funct. Mater. 2017, 27, 1701027; e) Y. Yan, M. Bjornmalm, F. Caruso, ACS Nano 2013, 7, 9512.
dc.identifier.citedreferencea) X. Wang, J. Li, Y. X. Wang, L. Koenig, A. Gjyrezi, P. Giannakakou, E. H. Shin, M. Tighiouart, Z. Chen, S. M. Nie, D. M. Shin, ACS Nano 2011, 5, 6184; b) R. R. Guo, Y. Tian, Y. J. Wang, W. L. Yang, Adv. Funct. Mater. 2017, 27, 1606398; c) C. B. He, K. D. Lu, D. M. Liu, W. B. Lin, J. Am. Chem. Soc. 2014, 136, 5181; d) Y. C. Li, X. H. Xu, X. Zhang, Y. K. Li, Z. J. Zhang, Z. W. Gu, ACS Nano 2017, 11, 416; e) N. H. Park, W. Cheng, F. Lai, C. Yang, P. F. de Sessions, B. Periaswamy, C. W. Chu, S. Bianco, S. Q. Liu, S. Venkataraman, Q. F. Chen, Y. Y. Yang, J. L. Hedrick, J. Am. Chem. Soc. 2018, 140, 4244; f) C. Yao, P. Y. Wang, X. M. Li, X. Y. Hu, J. L. Hou, L. Y. Wang, F. Zhang, Adv. Mater. 2016, 28, 9341; g) M. Z. Ye, Y. X. Han, J. B. Tang, Y. Piao, X. R. Liu, Z. X. Zhou, J. Q. Gao, J. H. Rao, Y. Q. Shen, Adv. Mater. 2017, 29, 1702342; h) R. X. Zhang, L. Y. Li, J. Li, Z. S. Xu, A. Z. Abbasi, L. Lin, M. A. Amini, W. Y. Weng, Y. Sun, A. M. Rauth, X. Y. Wu, Adv. Funct. Mater. 2017, 27, 1700804; i) P. F. Zhao, W. M. Yin, A. H. Wu, Y. S. Tang, J. Y. Wang, Z. Z. Pan, T. T. Lin, M. Zhang, B. F. Chen, Y. F. Duan, Y. Z. Huang, Adv. Funct. Mater. 2017, 27, 1700403.
dc.identifier.citedreferenceQ. Wang, X. Y. Zhang, H. Z. Liao, Y. Sun, L. Ding, Y. W. Teng, W. H. Zhu, Z. R. Zhang, Y. R. Duan, Adv. Funct. Mater. 2018, 28, 1706124.
dc.identifier.citedreferencea) Y. C. Zhou, F. T. Huang, Y. Yang, P. L. Wang, Z. Zhang, Y. N. Tang, Y. Q. Shen, K. Wang, Small 2018, 14, 1702446; b) J. Kim, Y. M. Lee, Y. Kang, W. J. Kim, ACS Nano 2014, 8, 9358.
dc.identifier.citedreferencea) H. Meng, W. X. Mai, H. Y. Zhang, M. Xue, T. Xia, S. J. Lin, X. Wang, Y. Zhao, Z. X. Ji, J. I. Zink, A. E. Nel, ACS Nano 2013, 7, 994; b) Q. Q. Ni, F. W. Zhang, Y. L. Zhang, G. Z. Zhu, Z. Wang, Z. G. Teng, C. Y. Wang, B. C. Yung, G. Niu, G. M. Lu, L. J. Zhang, X. Y. Chen, Adv. Mater. 2018, 30, 1705737; c) H. J. Yu, Z. A. Xu, X. Z. Chen, L. L. Xu, Q. Yin, Z. W. Zhang, Y. P. Li, Macromol. Biosci. 2014, 14, 100; d) C. B. He, C. Poon, C. Chan, S. D. Yamada, W. B. Lin, J. Am. Chem. Soc. 2016, 138, 6010; e) X. B. Xiong, A. Lavasanifar, ACS Nano 2011, 5, 5202; f) M. Bai, M. Shen, Y. W. Teng, Y. Sun, F. Li, X. Y. Zhang, Y. Y. Xu, Y. R. Duan, L. F. Du, Oncotarget 2015, 6, 43779.
dc.identifier.citedreferenceM. H. Cho, S. Kim, J. H. Lee, T. H. Shin, D. Yoo, J. Cheon, Nano Lett. 2016, 16, 7455.
dc.identifier.citedreferencea) Y. Gao, Y. Chen, X. F. Ji, X. Y. He, Q. Yin, Z. W. Zhang, J. L. Shi, Y. P. Li, ACS Nano 2011, 5, 9788; b) X. Guo, X. Wei, Y. T. Jing, S. B. Zhou, Adv. Mater. 2015, 27, 6450; c) Q. J. He, J. L. Shi, Adv. Mater. 2014, 26, 391; d) D. S. Ling, W. Park, S. J. Park, Y. Lu, K. S. Kim, M. J. Hackett, B. H. Kim, H. Yim, Y. S. Jeon, K. Na, T. Hyeon, J. Am. Chem. Soc. 2014, 136, 5647; e) H. J. Yu, Z. R. Cui, P. C. Yu, C. Y. Guo, B. Feng, T. Y. Jiang, S. L. Wang, Q. Yin, D. F. Zhong, X. L. Yang, Z. W. Zhang, Y. P. Li, Adv. Funct. Mater. 2015, 25, 2489; f) X. Ling, X. Chen, I. A. Riddell, W. Tao, J. Q. Wang, G. Hollett, S. J. Lippard, O. C. Farokhzad, J. J. Shi, J. Wu, Nano Lett. 2018, 18, 4618.
dc.identifier.citedreferencea) X. Guo, L. Wang, K. Duval, J. Fan, S. B. Zhou, Z. Chen, Adv. Mater. 2018, 30, 1705436; b) Q. Q. Qu, Y. Wang, L. Zhang, X. B. Zhang, S. B. Zhou, Small 2016, 12, 1378.
dc.identifier.citedreferenceY. Y. Zhou, L. X. Shi, Q. N. Li, H. Jiang, G. Lv, J. Zhao, C. H. Wu, M. Selke, X. M. Wang, Biomaterials 2010, 31, 4958.
dc.identifier.citedreferenceA. Calcabrini, S. Meschini, A. Stringaro, M. Cianfriglia, G. Arancia, A. Molinari, Histochem. J. 2000, 32, 599.
dc.identifier.citedreferencea) M. Molina, M. Asadianâ Birjand, J. Balach, J. Bergueiro, E. Miceli, M. Calderon, Chem. Soc. Rev. 2015, 44, 6161; b) R. Mo, T. Y. Jiang, R. DiSanto, W. Y. Tai, Z. Gu, Nat. Commun. 2014, 5, 3364; c) Y. T. Lim, S. M. Shim, Y. W. Noh, K. S. Lee, D. Y. Choi, H. Uyama, H. H. Bae, J. H. Kim, K. S. Hong, M. H. Sung, H. Poo, Small 2011, 7, 3281; d) W. Chen, Y. Zou, Z. Y. Zhong, R. Haag, Small 2017, 13, 1601997; e) K. I. Min, D. H. Kim, H. J. Lee, L. W. Lin, D. P. Kim, Angew. Chem., Int. Ed. 2018, 57, 5630; f) Y. S. Chen, S. J. Yoon, W. Frey, M. Dockery, S. Emelianov, Nat. Commun. 2017, 8, 15782; g) R. Kawasaki, Y. Sasaki, K. Katagiri, S. Mukai, S. Sawada, K. Akiyoshi, Angew. Chem., Int. Ed. 2016, 55, 11377; h) H. J. Kim, K. Y. Zhang, L. Moore, D. Hong, ACS Nano 2014, 8, 2998; i) M. Giulbudagian, G. Yealland, S. Honzke, A. Edlich, B. Geisendorfer, B. Kleuser, S. Hedtrich, M. Calderon, Theranostics 2018, 8, 450; j) H. B. Zhang, Y. Q. Zhu, L. L. Qu, H. Y. Wu, H. X. Kong, Z. Yang, D. Chen, E. Makila, J. Salonen, H. A. Santos, M. T. Hai, D. A. Weitz, Nano Lett. 2018, 18, 1448; k) X. D. Zhang, L. Y. Xia, X. K. Chen, Z. Chen, F. G. Wu, Sci. China Mater. 2017, 60, 487.
dc.identifier.citedreferencea) F. F. Sahle, M. Giulbudagian, J. Bergueiro, J. Lademann, M. Calderon, Nanoscale 2017, 9, 172; b) B. Y. Shi, X. Du, J. Chen, L. B. Fu, M. Morsch, A. Lee, Y. Liu, N. Cole, R. Chung, Small 2017, 13, 1603966; c) F. Ding, Q. B. Mou, Y. Ma, G. F. Pan, Y. Y. Guo, G. S. Tong, C. H. J. Choi, X. Y. Zhu, C. Zhang, Angew. Chem., Int. Ed. 2018, 57, 3064; d) M. H. Xiong, Y. Bao, X. J. Du, Z. B. Tan, Q. Jiang, H. X. Wang, Y. H. Zhu, J. Wang, ACS Nano 2013, 7, 10636; e) M. H. Xiong, Y. Bao, X. Z. Yang, Y. C. Wang, B. L. Sun, J. Wang, J. Am. Chem. Soc. 2012, 134, 4355; f) Q. W. Zhu, X. J. Chen, X. Xu, Y. Zhang, C. Zhang, R. Mo, Adv. Funct. Mater. 2018, 28, 1707371.
dc.identifier.citedreferencea) X. Wang, D. C. Niu, P. Li, Q. Wu, X. W. Bo, B. J. Liu, S. Bao, T. Su, H. X. Xu, Q. G. Wang, ACS Nano 2015, 9, 5646; b) M. Chan, J. Lux, T. Nishimura, K. Akiyoshi, A. Almutairi, Biomacromolecules 2015, 16, 2964; c) A. Yahiaâ Ammar, D. Sierra, F. Merola, N. Hildebrandt, X. Le Guevel, ACS Nano 2016, 10, 2591; d) C. Gota, K. Okabe, T. Funatsu, Y. Harada, S. Uchiyama, J. Am. Chem. Soc. 2009, 131, 2766.
dc.identifier.citedreferencea) S. Y. Wang, G. Kim, Y. E. K. Lee, H. J. Hah, M. Ethirajan, R. K. Pandey, R. Kopelman, ACS Nano 2012, 6, 6843; b) S. Quan, Y. Wang, A. Zhou, P. Kumar, R. Narain, Biomacromolecules 2015, 16, 1978; c) Z. Khatun, M. Nurunnabi, M. Nafiujjaman, G. R. Reeck, H. A. Khan, K. J. Cho, Y. K. Lee, Nanoscale 2015, 7, 10680.
dc.identifier.citedreferenceK. Y. Win, S. S. Feng, Biomaterials 2005, 26, 2713.
dc.identifier.citedreferenceX. K. Chen, X. D. Zhang, L. Y. Xia, H. Y. Wang, Z. Chen, F. G. Wu, Nano Lett. 2018, 18, 1159.
dc.identifier.citedreferencea) M. R. K. Ali, Y. Wu, D. Ghosh, B. H. Do, K. C. Chen, M. R. Dawson, N. Fang, T. A. Sulchek, M. A. Elâ Sayed, ACS Nano 2017, 11, 3716; b) Y. X. Zhu, H. R. Jia, G. Y. Pan, N. W. Ulrich, Z. Chen, F. G. Wu, J. Am. Chem. Soc. 2018, 140, 4062.
dc.identifier.citedreferenceY. H. Jiang, J. M. Fay, C. D. Poon, N. Vinod, Y. L. Zhao, K. Bullock, S. Qin, D. S. Manickam, X. Yi, W. A. Banks, A. V. Kabanov, Adv. Funct. Mater. 2018, 28, 1703982.
dc.identifier.citedreferencea) X. D. Zhang, X. K. Chen, S. Q. Kai, H. Y. Wang, J. J. Yang, F. G. Wu, Z. Chen, Anal. Chem. 2015, 87, 3360; b) X. D. Zhang, X. K. Chen, J. J. Yang, H. R. Jia, Y. H. Li, Z. Chen, F. G. Wu, Adv. Funct. Mater. 2016, 26, 5958.
dc.identifier.citedreferenceZ. H. Sheng, D. H. Hu, M. M. Xue, M. He, P. Gong, L. T. Cai, Nanoâ Micro Lett. 2013, 5, 145.
dc.identifier.citedreferenceR. A. P. Harrison, S. E. Vickers, J. Reprod. Fertil. 1990, 88, 343.
dc.identifier.citedreferenceL. N. Shulman, C. M. Wagner, R. Barr, G. Lopes, G. Longo, J. Robertson, G. Forte, J. Torode, N. Magrini, J. Clin. Oncol. 2016, 34, 69.
dc.identifier.citedreferenceH. S. Yoo, E. A. Lee, T. G. Park, J. Controlled Release 2002, 82, 17.
dc.identifier.citedreferenceT. Pederson, Nucleic Acids Res. 1998, 26, 3871.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.