Show simple item record

Electron Density Distributions in Saturn’s Ionosphere

dc.contributor.authorPersoon, A. M.
dc.contributor.authorKurth, W. S.
dc.contributor.authorGurnett, D. A.
dc.contributor.authorGroene, J. B.
dc.contributor.authorSulaiman, A. H.
dc.contributor.authorWahlund, J.‐e.
dc.contributor.authorMorooka, M. W.
dc.contributor.authorHadid, L. Z.
dc.contributor.authorNagy, A. F.
dc.contributor.authorWaite, J. H.
dc.contributor.authorCravens, T. E.
dc.date.accessioned2019-05-31T18:24:48Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03-28
dc.identifier.citationPersoon, A. M.; Kurth, W. S.; Gurnett, D. A.; Groene, J. B.; Sulaiman, A. H.; Wahlund, J.‐e. ; Morooka, M. W.; Hadid, L. Z.; Nagy, A. F.; Waite, J. H.; Cravens, T. E. (2019). "Electron Density Distributions in Saturn’s Ionosphere." Geophysical Research Letters 46(6): 3061-3068.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/149200
dc.description.abstractBetween 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A twoâ part exponential scale height model is fitted to the electron density measurements. The model yields a doubleâ layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere.Plain Language SummaryFor the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn’s main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn’s ionosphere. This paper provides the density distribution of Saturn’s ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented.Key PointsWe present the first in situ measurements of the electron density in the low to middle latitudes of Saturn’s ionosphereThe distribution of electron density measurements with altitude shows evidence of a twoâ layered ionospheric electron density distribution up to an altitude of 15,000 kmWe present a scale height electron density model for a doubleâ layered ionosphere for both the northern and southern hemispheres
dc.publisherUniversity of Arizona Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherscale height density model
dc.subject.otherSaturn
dc.subject.otherSaturn’s ionosphere
dc.subject.otherionospheric layers
dc.subject.otherelectron densities
dc.subject.otherplasma scale height
dc.titleElectron Density Distributions in Saturn’s Ionosphere
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149200/1/grl57699_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149200/2/grl57699.pdf
dc.identifier.doi10.1029/2018GL078020
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMoore, L., Cravens, T. E., Müllerâ Wodarg, I., Perry, M., Waite, J. H.   Jr., Perryman, R., et al. ( 2018 ). Models of Saturn’s equatorial ionosphere based on in situ data from Cassini’s Grand Finale. Geophysical Research Letters, 45, 9398 â 9407. https://doi.org/10.1029/2018GL078162
dc.identifier.citedreferenceArchinal, B. A., A’Hearn, M. F., Bowell, E., Conrad, A., Consolmagno, G. J., Courtin, R., et al. ( 2011 ). Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celestial Mechanics and Dynamical Astronomy, 109 ( 2 ), 101 â 135. https://doi.org/10.1007/s10569â 010â 9320â 4
dc.identifier.citedreferenceAtreya, S. K., Waite, J. H., Donahue, T. M., Nagy, A. F., & McConnell, J. C. ( 1984 ). Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn. In T. Gehrels & M. S. Matthews (Eds.), Saturn (pp. 239 â 277 ). Tucson: University of Arizona Press.
dc.identifier.citedreferenceConnerney, J. E. P., & Waite, J. H. ( 1984 ). New model of Saturn’s ionosphere with an influx of water from the rings. Nature, 312 ( 5990 ), 136 â 138. https://doi.org/10.1038/312136a0
dc.identifier.citedreferenceCravens, T. E., Moore, L., Waite, J. H. Jr., Perryman, R., Perry, M., Wahlund, J.â E., et al. ( 2018 ). The ion composition of Saturn’s equatorial ionosphere as observed by Cassini. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077868
dc.identifier.citedreferenceFischer, G., Gurnett, D. A., Kurth, W. S., Akalin, F., Zarka, P., Dyudina, U. A., et al. ( 2008 ). Atmospheric electricity at Saturn. Space Science Reviews, 137 ( 1â 4 ), 271 â 285. https://doi.org/10.1007/s11214â 008â 9370â z
dc.identifier.citedreferenceFischer, G., Gurnett, D. A., Zarka, P., Moore, L., & Dyudina, U. A. ( 2011 ). Peak electron densities in Saturn’s ionosphere derived from the lowâ frequency cutoff of Saturn lightning. Journal of Geophysical Research, 116, A04315. https://doi.org/10.1029/2010JA016187
dc.identifier.citedreferenceGurnett, D. A., Shawhan, S. D., & Shaw, R. R. ( 1983 ). Auroral hiss, Z mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE 1 observations. Journal of Geophysical Research, 88 ( A1 ), 329 â 340. https://doi.org/10.1029/JA088iA01p00329
dc.identifier.citedreferenceHadid, L. Z., Morooka, M. W., Wahlund, J.â E., Moore, L., Cravens, T. E., Hedman, M. M., et al. ( 2018 ). Ring shadowing effects on Saturn’s ionosphere: Implications for ring opacity and plasma transport. Geophysical Research Letters, 45, 10,084 â 10,092. https://doi.org/10.1029/2018GL079150
dc.identifier.citedreferenceHadid, L. Z., Morooka, M. W., Wahlund, J.â E., Persoon, A. M., Andrews, D. J., Shebanits, O., et al. ( 2018 ). Saturn’s ionosphere: Electron density altitude profiles and D ring interaction from the Cassini Grand Finale. Geophysical Research Letters. https://doi.org/10.1029/2018GL078004
dc.identifier.citedreferenceKaiser, M. L., Desch, M. D., & Connerney, J. E. P. ( 1984 ). Saturn’s ionosphere: Inferred electron densities. Journal of Geophysical Research, 89 ( A4 ), 2371 â 2376. https://doi.org/10.1028/JA089iA04p02371
dc.identifier.citedreferenceKliore, A. J., Nagy, A., Asmar, S., Anabtawi, A., Barbinis, E., Fleischman, D., et al. ( 2014 ). The ionosphere of Saturn as observed by the Cassini Radio Science System. Geophysical Research Letters, 41, 5778 â 5782. https://doi.org/10.1002/2014GL060512
dc.identifier.citedreferenceKliore, A. J., Nagy, A. F., Marouf, E. A., Anabtawi, A., Barbinis, E., Fleischman, D. U., & Kahan, D. S. ( 2009 ). Midlatitude and highâ latitude electron density profiles in the ionosphere of Saturn by Cassini radio occultation observations. Journal of Geophysical Research, 114, A04315. https://doi.org/10.1029/2008JA013900
dc.identifier.citedreferenceKliore, A. J., Patel, I. R., Lindal, G. F., Sweetnam, D. N., Hotz, H. B., Waite, J. H., & McDonough, T. R. ( 1980 ). Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation. Journal of Geophysical Research, 85 ( A11 ), 5857 â 5870. https://doi.org/10.1029/JA085iA11p05857
dc.identifier.citedreferenceLindal, G. F., Sweetnam, D. N., & Eshleman, V. R. ( 1985 ). The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. The Astronomical Journal, 90, 1136. https://doi.org/10.1086/113820
dc.identifier.citedreferenceMitchell, D. G., Perry, M. E., Hamilton, D. C., Westlake, J., Kollmann, P., Smith, H. T., et al. ( 2018 ). Dust grains fall from Saturn’s Dâ ring into its equatorial upper atmosphere. Science, 362. https://doi.org/10.1126/science.aat2236
dc.identifier.citedreferenceMorooka, M. W., Wahlund, J.â E., Hadid, L. Z., Eriksson, A. I., Edberg, N. J. T., Vigren, E., et al. ( 2019 ). Saturn’s dusty ionosphere. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2018JA026154
dc.identifier.citedreferenceNagy, A. F., Kliore, A. J., Marouf, E., French, R., Flasar, M., Rappaport, N. J., et al. ( 2006 ). First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft. Journal of Geophysical Research, 111, A06310. https://doi.org/10.1029/2005JA011519
dc.identifier.citedreferenceNagy, A. F., Kliore, A. J., Mendillo, M., Miller, S., Moore, L., Moses, J. I., et al. ( 2009 ). Upper atmosphere and ionosphere of Saturn. In M. K. Dougherty, L. W. Esposito, & S. M. Krimigis (Eds.), Saturn from Cassiniâ Huygens (pp. 181 â 201 ). Dordrecht: Springer. https://doi.org/10.1007/978â 1â 4020â 9217â 6_8
dc.identifier.citedreferenceO’Donoghue, J., Moore, L., Connerney, J. E. P., Melin, H., Stallard, T. S., Miller, S., & Baines, K. H. ( 2017 ). Redetection of the ionospheric H 3 + signature of Saturn’s â Ring Rainâ . Geophysical Research Letters, 44 (23), 11,762 â 11,769. https://doi.org/10.1002/2017GL075932
dc.identifier.citedreferencePersoon, A. M., Gurnett, D. A., Kurth, W. S., Hospodarsky, G. B., Groene, J. B., Canu, P., & Dougherty, M. K. ( 2005 ). Equatorial electron density measurements in Saturn’s inner magnetosphere. Geophysical Research Letters, 32, L23105. https://doi.org/10.1029/2005GL024294
dc.identifier.citedreferenceSchunk, R. W., & Nagy, A. F. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry ( 2nd ed.). United Kingdom: Cambridge University Press. https://doi.org/10.1017/CB09780511635342
dc.identifier.citedreferenceSulaiman, A. H., Kurth, W. S., Persoon, A. M., Menietti, J. D., Hospodarsky, G. B., Farrell, W. M., et al. ( 2017 ). Intense harmonic emissions observed in Saturn’s ionosphere. Geophysical Research Letters, 44, 12,049 â 12,056. https://doi.org/10.1002/2017GL076184
dc.identifier.citedreferenceWahlund, J.â E., Morooka, M. W., Hadid, L. Z., Persoon, A. M., Farrell, W. M., Gurnett, D. A., et al. ( 2018 ). In situ measurements of Saturn’s ionosphere show it is dynamic and interacts with the rings. Science, 359 ( 6371 ), 66 â 68. https://doi.org/10.1126/science.aao4134
dc.identifier.citedreferenceWaite, J. H.   Jr., Perryman, R. S., Perry, M. E., Miller, K. E., Bell, J., Cravens, T. E., et al. ( 2018 ). INMS observations of chemical Interactions between Saturn’s atmosphere and rings. Science, 362. https://doi.org/10.1126/science.aat2382
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.