Show simple item record

Automated pectoral muscle identification on MLOâ view mammograms: Comparison of deep neural network to conventional computer vision

dc.contributor.authorMa, Xiangyuan
dc.contributor.authorWei, Jun
dc.contributor.authorZhou, Chuan
dc.contributor.authorHelvie, Mark A.
dc.contributor.authorChan, Heang‐ping
dc.contributor.authorHadjiiski, Lubomir M.
dc.contributor.authorLu, Yao
dc.date.accessioned2019-05-31T18:24:53Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationMa, Xiangyuan; Wei, Jun; Zhou, Chuan; Helvie, Mark A.; Chan, Heang‐ping ; Hadjiiski, Lubomir M.; Lu, Yao (2019). "Automated pectoral muscle identification on MLOâ view mammograms: Comparison of deep neural network to conventional computer vision." Medical Physics 46(5): 2103-2114.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/149204
dc.publisherWiley Periodicals, Inc.
dc.publisherMcGrawâ Hill
dc.subject.otherdeep convolutional neural network (DCNN)
dc.subject.otherpectoral muscle
dc.subject.othermediolateral oblique (MLO) view
dc.subject.othermammogram
dc.titleAutomated pectoral muscle identification on MLOâ view mammograms: Comparison of deep neural network to conventional computer vision
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149204/1/mp13451_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149204/2/mp13451.pdf
dc.identifier.doi10.1002/mp.13451
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceGhuneim AG. Mooreâ Neighbor Tracing: _V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/moore.html. http://www.imageprocessingplace.com/downloads
dc.identifier.citedreferenceChan HP, Lo SCB, Sahiner B, Lam KL, Helvie MA. Computerâ aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network. Med Phys. 1995; 22: 1555 â 1567.
dc.identifier.citedreferenceLo Sâ CB, Chan HP, Lin Jâ S, Li H, Freedman MT, Mun SK. Artificial convolution neural network for medical image pattern recognition. Neural Netw. 1995; 8: 1201 â 1214.
dc.identifier.citedreferenceSahiner B, Chan HP, Petrick N, et al. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996; 15: 598 â 610.
dc.identifier.citedreferenceKrizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (Advances in Neural Information Processing Systems 25); 2012: 1097â 1105.
dc.identifier.citedreferenceSzegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inceptionâ v4, Inceptionâ ResNet and the Impact of Residual Connections on Learning. In: Proceedings of the Thirtyâ First AAAI Conference on Artificial Intelligence (AAAIâ 17); 2017:4278â 4284.
dc.identifier.citedreferenceRodriguezâ Ruiz A, Teuwen J, Chung K, et al. Pectoral muscle segmentation in breast tomosynthesis with deep learning. Proc SPIE. 2018; 10575: 7.
dc.identifier.citedreferencePetrick N, Sahiner B, Armato SG, et al. Evaluation of computerâ aided detection and diagnosis systems. Med Phys. 2013; 40: 087001.
dc.identifier.citedreferenceRonneberger O, Fischer P, Brox T. Uâ Net: convolutional networks for biomedical image segmentation; 2015. arXiv:1505.04597.
dc.identifier.citedreferenceChollet F. Keras:. https://github.com/fchollet/keras GitHub repository; 2015.
dc.identifier.citedreferenceNasr GE, Badr EA, Joun C. Cross entropy error function in neural networks: forecasting gasoline demand. In: Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference; 2002.
dc.identifier.citedreferenceMilletari F, Navab N, Ahmadi Sâ A. Vâ net: fully convolutional neural networks for volumetric medical image segmentation. Paper presented at: 3D Vision (3DV), 2016 Fourth International Conference 2016. IEEE.
dc.identifier.citedreferenceAtiqur Rahman M, Wang Y. Optimizing Intersectionâ Overâ Union in Deep Neural Networks for Image Segmentation. Vol 10072; 2016.
dc.identifier.citedreferencePerez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:171204621; 2017.
dc.identifier.citedreferenceJaccard P. The distribution of the flora in the alpine zone. New Phytol. 1912; 11: 37 â 50.
dc.identifier.citedreferenceRockafellar RT, Wets RJâ B. Variational Analysis. Vol 317. Berlin: Springerâ Verlag; 2005; 117.
dc.identifier.citedreferenceAnton H. Elementary Linear Algebra, 7th ed. Hoboken, NJ: John Wiley & Sons; 1994: 170 â 171.
dc.identifier.citedreferenceSamala RK, Chan Hâ P, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016; 43: 6654 â 6666.
dc.identifier.citedreferenceSamala RK, Chan Hâ P, Hadjiiski LM, Helvie MA, Cha KH, Richter CD. Multiâ task transfer learning deep convolutional neural network: application to computerâ aided diagnosis of breast cancer on mammograms. Phys Med Biol. 2017; 62: 8894 â 8908.
dc.identifier.citedreferenceFerrari RJ, Rangayyan RM, Desautels JL, Borges R, Frere AF. Automatic identification of the pectoral muscle in mammograms. IEEE Trans Med Imaging. 2004; 23: 232 â 245.
dc.identifier.citedreferenceBurgess A. On the noise variance of a digital mammography system. Med Phys. 2004; 31: 1987 â 1995.
dc.identifier.citedreferenceKinoshita SK, Azevedoâ Marques PM, Pereira RR, Rodrigues JAH, Rangayyan RM. Radonâ domain detection of the nipple and the pectoral muscle in mammograms. J Dig Imaging. 2008; 21: 37 â 49.
dc.identifier.citedreferenceShelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017; 39: 640 â 651.
dc.identifier.citedreferenceZhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017:6230â 6239.
dc.identifier.citedreferenceBadrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoderâ decoder architecture for image segmentation. IEEE Trans Patt Anal Mach Intell. 2017; 39: 2481 â 2495.
dc.identifier.citedreferenceSiegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA. 2017; 67: 7 â 30.
dc.identifier.citedreferenceZuckerman HC. The role of mammography in the diagnosis of breast cancer. In: Ariel IM, Cleary JB, eds. Breast cancer, diagnosis and treatment. New York, NY: McGrawâ Hill; 1987.
dc.identifier.citedreferenceMcCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a metaâ analysis. Cancer Epidemiol Biomarkers Prev. 2006; 15: 1159 â 1169.
dc.identifier.citedreferenceBoyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007; 356: 227 â 236.
dc.identifier.citedreferenceBoyd NF, Martin LJ, Yaffe MJ, Minkin S. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 2011; 13: 223 â 223.
dc.identifier.citedreferenceGanesan K, Acharya UR, Chua KC, Min LC, Abraham KT. Pectoral muscle segmentation: a review. Comput Methods Programs Biomed. 2013; 110: 48 â 57.
dc.identifier.citedreferenceGoodsitt MM, Chan HP, Liu B, et al. Classification of compressed breast shapes for the design of equalization filters in xâ ray mammography. Med Phys. 1998; 25: 937 â 948.
dc.identifier.citedreferenceHong BW, Sohn BS. Segmentation of regions of interest in mammograms in a topographic approach. IEEE Trans Inform Technol Biomed. 2010; 14: 129 â 139.
dc.identifier.citedreferenceMirzaalian H, Ahmadzadeh MR, Sadri S. Pectoral Muscle Segmentation on Digital Mammograms by Nonlinear Diffusion Filtering. Paper presented at: 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing; 22â 24 Aug. 2007.
dc.identifier.citedreferenceKarssemeijer N. Automated classification of parenchymal patterns in mammograms. Phys Med Biol. 1998; 43: 365.
dc.identifier.citedreferenceMa F, Bajger M, Slavotinek JP, Bottema MJ. Two graph theory based methods for identifying the pectoral muscle in mammograms. Patt Recogn. 2007; 40: 2592 â 2602.
dc.identifier.citedreferenceZhou C, Wei J, Chan HP, et al. Computerized image analysis: textureâ field orientation method for pectoral muscle identification on MLOâ view mammograms. Med Phys. 2010; 37: 2289 â 2299.
dc.identifier.citedreferenceTaghanaki SA, Liu Y, Miles B, Hamarneh G. Geometryâ based pectoral muscle segmentation from MLO mammogram views. IEEE Trans Biomed Eng. 2017; 64: 2662 â 2671.
dc.identifier.citedreferenceFukushima K, Miyake S, Ito T. Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans Syst Man Cybernet. 1983; SMCâ 13: 826 â 834.
dc.identifier.citedreferenceFukushima K. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1988; 1: 119 â 130.
dc.identifier.citedreferenceLo Sâ CB, Lin Jâ S, Freedman MT, Mun SK. Computerâ assisted diagnosis of lung nodule detection using artificial convoultion neural network. Proc SPIE. 1993; 1898: 859 â 869.
dc.identifier.citedreferenceChan HP, Lo SCB, Helvie MA, Goodsitt MM, Cheng S, Adler DD. Recognition of mammographic microcalcifications with artificial neural network. Radiology. 1993; 189: 318.
dc.identifier.citedreferenceChan Hâ P, Sahiner B, Lo Sâ C, et al. Computerâ aided diagnosis in mammography: detection of masses by artificial neural network. Paper presented at: 36th Annual Meeting of the American Association of Physicists in Medicine. Med Phys. 1994; 21: 875 â 876.
dc.identifier.citedreferenceLo Sâ CB, Lou Sâ LA, Lin Jâ S, Freedman MT, Chien MV, Mun SK. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging. 1995; 14: 711 â 718.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.