Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps
dc.contributor.author | Song, Yang | |
dc.contributor.author | Kadiyala, Usha | |
dc.contributor.author | Weerappuli, Priyan | |
dc.contributor.author | Valdez, Jordan J. | |
dc.contributor.author | Yalavarthi, Srilakshmi | |
dc.contributor.author | Louttit, Cameron | |
dc.contributor.author | Knight, Jason S. | |
dc.contributor.author | Moon, James J. | |
dc.contributor.author | Weiss, David S. | |
dc.contributor.author | VanEpps, J. Scott | |
dc.contributor.author | Takayama, Shuichi | |
dc.date.accessioned | 2019-05-31T18:25:08Z | |
dc.date.available | 2020-06-01T14:50:01Z | en |
dc.date.issued | 2019-04 | |
dc.identifier.citation | Song, Yang; Kadiyala, Usha; Weerappuli, Priyan; Valdez, Jordan J.; Yalavarthi, Srilakshmi; Louttit, Cameron; Knight, Jason S.; Moon, James J.; Weiss, David S.; VanEpps, J. Scott; Takayama, Shuichi (2019). "Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps." Advanced Materials 31(14): n/a-n/a. | |
dc.identifier.issn | 0935-9648 | |
dc.identifier.issn | 1521-4095 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/149216 | |
dc.description.abstract | Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses.Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | antibiotic resistance | |
dc.subject.other | bacteria E. coli | |
dc.subject.other | biomimetic materials | |
dc.subject.other | DNA nanofiber networks | |
dc.subject.other | neutrophil extracellular traps | |
dc.title | Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbsecondlevel | Engineering (General) | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/149216/1/adma201807436-sup-0001-S1.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/149216/2/adma201807436_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/149216/3/adma201807436.pdf | |
dc.identifier.doi | 10.1002/adma.201807436 | |
dc.identifier.source | Advanced Materials | |
dc.identifier.citedreference | a) Y. Liu, M. Guthold, M. J. Snyder, H. Lu, Colloids Surf., B 2015, 134, 17. b) L. A. Lanier, H. Bermudez, Macromol. Rapid Commun. 39, 1800342; c) M. Roushan, M. Jorfi, A. Mishra, K. H. K. Wong, J. Jorgensen, E. Ell, J. F. Markmann, J. Lee, D. Irimia. Adv. Biosyst. 2, 1800040. | |
dc.identifier.citedreference | T. A. Blackledge, N. Scharff, J. A. Coddington, T. Szüts, J. W. Wenzel, C. Y. Hayashi, I. Agnarsson, Proc. Natl. Acad. Sci. USA 2009, 106, 5229. | |
dc.identifier.citedreference | a) D. K. V. Kumar, S. H. Choi, K. J. Washicosky, W. A. Eimer, S. Tucker, J. Ghofrani, A. Lefkowitz, G. McColl, L. E. Goldstein, R. E. Tanzi, R. D. Moir, Sci. Transl. Med. 2016, 8, 340ra72; b) U. Shimanovich, I. Efimov, T. O. Mason, P. Flagmeier, A. K. Buell, A. Gedanken, S. Linse, K. S. Åkerfeldt, C. M. Dobson, D. A. Weitz, T. P. Knowles, ACS Nano 2015, 9, 43. | |
dc.identifier.citedreference | L. Drago, M. Bortolin, C. Vassena, S. Taschieri, M. Del Fabbro, BMC Microbiol. 2013, 13, 47. | |
dc.identifier.citedreference | V. Brinkmann, A. Zychlinsky, Nat. Rev. Microbiol. 2007, 5, 577. | |
dc.identifier.citedreference | V. Papayannopoulos, K. D. Metzler, A. Hakkim, A. Zychlinsky, J. Cell Biol. 2010, 191, 677. | |
dc.identifier.citedreference | a) V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, Y. Weinrauch, A. Zychlinsky, Science 2004, 303, 1532; b) R. L. Young, K. C. Malcolm, J. E. Kret, S. M. Caceres, K. R. Poch, D. P. Nichols, J. L. Taylor‐Cousar, M. T. Saavedra, S. H. Randell, M. L. Vasil, J. L. Burns, PLoS One 2011, 6, e23637. | |
dc.identifier.citedreference | C. F. Urban, U. Reichard, V. Brinkmann, A. Zychlinsky, Cell. Microbiol. 2006, 8, 668. | |
dc.identifier.citedreference | C. N. Jenne, C. H. Wong, F. J. Zemp, B. McDonald, M. M. Rahman, P. A. Forsyth, G. McFadden, P. Kubes, Cell Host Microbe 2013, 13, 169. | |
dc.identifier.citedreference | A. B. Guimarães‐Costa, M. T. Nascimento, G. S. Froment, R. P. Soares, F. N. Morgado, F. Conceição‐Silva, E. M. Saraiva, Proc. Natl. Acad. Sci. USA 2009, 106, 6748. | |
dc.identifier.citedreference | a) F. Wartha, K. Beiter, B. Albiger, J. Fernebro, A. Zychlinsky, S. Normark, B. Henriques‐Normark, Cell. Microbiol. 2007, 9, 1162; b) F. Ma, L. Yi, N. Yu, G. Wang, Z. Ma, H. Lin, H. Fan, Front. Cell. Infect. Microbiol. 2017, 7, 86. | |
dc.identifier.citedreference | a) R. Menegazzi, E. Decleva, P. Dri, Blood 2012, 119, 1214; b) V. Thammavongsa, D. M. Missiakas, O. Schneewind, Science 2013, 342, 863. | |
dc.identifier.citedreference | a) V. Marcos, Z. Zhou, A. Ö. Yildirim, A. Bohla, A. Hector, L. Vitkov, E. M. Wiedenbauer, W. D. Krautgartner, W. Stoiber, B. H. Belohradsky, N. Rieber, Nat. Med. 2010, 16, 1018; b) V. Papayannopoulos, Nat. Rev. Immunol. 2018, 18, 134. | |
dc.identifier.citedreference | C. F. Urban, D. Ermert, M. Schmid, U. Abu‐Abed, C. Goosmann, W. Nacken, V. Brinkmann, P. R. Jungblut, A. Zychlinsky, PLoS Pathog. 2009, 5, e1000639. | |
dc.identifier.citedreference | C. Mottola, D. Romeo, J. Cell Biol. 1982, 93, 129. | |
dc.identifier.citedreference | S. R. Clark, A. C. Ma, S. A. Tavener, B. McDonald, Z. Goodarzi, M. M. Kelly, K. D. Patel, S. Chakrabarti, E. McAvoy, G. D. Sinclair, E. M. Keys, Nat. Med. 2007, 13, 463. | |
dc.identifier.citedreference | B. G. Yipp, B. Petri, D. Salina, C. N. Jenne, B. N. Scott, L. D. Zbytnuik, K. Pittman, M. Asaduzzaman, K. Wu, H. C. Meijndert, S. E. Malawista, Nat. Med. 2012, 18, 1386. | |
dc.identifier.citedreference | J. P. Frampton, M. Tsuei, J. B. White, A. T. Abraham, S. Takayama. Biotechnol. J. 2015, 10, 121. | |
dc.identifier.citedreference | a) T. H. Ng, M.‐H. Wu, S.‐H. Chang, T. Aoki, H.‐C. Wang, Dev. Comp. Immunol. 2015, 48, 229; b) R. J. Meinersmann, S. R. Ladely, J. R. Plumblee, M. C. Hall, S. A. Simpson, L. L. Ballard, B. E. Scheffler, L. L. Genzlinger, K. L. Cook, Genome Announce. 2016, 4, e00898. | |
dc.identifier.citedreference | a) R. H. Pires, S. B. Felix, M. Delcea, Nanoscale 2016. 8, 14193; b) R. Manzenreiter, F. Kienberger, V. Marcos, K. Schilcher, W. D. Krautgartner, A. Obermayer, M. Huml, W. Stoiber, A. Hector, M. Griese, M. Hannig, J. Cystic Fibrosis 2012, 11, 84. | |
dc.identifier.citedreference | V. Papayannopoulos, D. Staab, A. Zychlinsky, PLoS One 2011, 6, e28526. | |
dc.identifier.citedreference | a) M. Floyd, M. Winn, C. Cullen, P. Sil, B. Chassaing, D. Yoo, A. T. Gewirtz, J. B. Goldberg, L. L. McCarter, B. Rada. PLoS Pathog. 2016, 12, e1005987. b) V. Brinkmann, A. Zychlinsky, J. Cell Biol. 2012, 198, 773. | |
dc.identifier.citedreference | a) J. G. Hirsch, J. Exp. Med. 1958, 108, 925. b) C. Tagai, S. Morita, T. Shiraishi, K. Miyaji, S. Iwamuro, Peptides 2011, 32, 2003. | |
dc.identifier.citedreference | a) Y. Yu, K. Kwon, T. Tsitrin, S. Bekele, P. Sikorski, K. E. Nelson, R. Pieper, PLoS Pathog. 2017, 13, e1006151; b) S. S. Justice, D. A. Hunstad, P. C. Seed, S. J. Hultgren, Proc. Natl. Acad. Sci. USA 2006, 103, 19884. | |
dc.identifier.citedreference | L. Dalfino, F. Puntillo, M. J. M. Ondok, A. Mosca, R. Monno, S. Coppolecchia, M. L. Spada, F. Bruno, N. Brienza. Clin. Infect. Dis. 2015, 61, 1771. | |
dc.identifier.citedreference | F. Rose, K. U. Heuer, U. Sibelius, S. Hombach‐Klonisch, L. Kiss, W. Seeger, F. Grimminger. J. Infect. Dis. 2000, 182, 191. | |
dc.identifier.citedreference | J. Li, R. L. Nation, R. W. Milne, J. D. Turnidge, K. Coulthard, Int. J. Antimicrob. Agents 2005, 25, 11. | |
dc.identifier.citedreference | M. Koike, K. Iida, Matsuo T. J. Bacteriol. 1969, 97, 448. | |
dc.identifier.citedreference | M. W. Munks, A. S. McKee, M. K. MacLeod, R. L. Powell, J. L. Degen, N. A. Reisdorph, J. W. Kappler, P. Marrack, Blood 2010, 116, 5191. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.