Show simple item record

Seasonal dynamics and exports of elements from a first‐order stream to a large inland lake in Michigan

dc.contributor.authorHofmeister, Kathryn L.
dc.contributor.authorNave, Lucas E.
dc.contributor.authorDrevnick, Paul
dc.contributor.authorVeverica, Timothy
dc.contributor.authorKnudstrup, Renee
dc.contributor.authorHeckman, Katherine A.
dc.contributor.authorRiha, Susan J.
dc.contributor.authorSchneider, Rebecca L.
dc.contributor.authorWalter, M. Todd
dc.date.accessioned2019-05-31T18:25:16Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05-15
dc.identifier.citationHofmeister, Kathryn L.; Nave, Lucas E.; Drevnick, Paul; Veverica, Timothy; Knudstrup, Renee; Heckman, Katherine A.; Riha, Susan J.; Schneider, Rebecca L.; Walter, M. Todd (2019). "Seasonal dynamics and exports of elements from a first‐order stream to a large inland lake in Michigan." Hydrological Processes 33(10): 1476-1491.
dc.identifier.issn0885-6087
dc.identifier.issn1099-1085
dc.identifier.urihttps://hdl.handle.net/2027.42/149221
dc.description.abstractHeadwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3−, PO43−, SO42−). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.
dc.publisherW.H. Freeman and Company
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstream discharge
dc.subject.otherstream chemistry
dc.subject.otherconcentration
dc.subject.otherdischarge relationship
dc.subject.otherheadwater stream
dc.titleSeasonal dynamics and exports of elements from a first‐order stream to a large inland lake in Michigan
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelGeography and Maps
dc.subject.hlbsecondlevelCivil and Environmental Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149221/1/hyp13416.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149221/2/hyp13416_am.pdf
dc.identifier.doi10.1002/hyp.13416
dc.identifier.sourceHydrological Processes
dc.identifier.citedreferenceNave, L. E., Covarrubias Ornelas, A., Drevnick, P. E., Gallo, A., Hatten, J. A., Heckman, K. A., … Swanston, C. W. ( 2019 ). Carbon‐mercury interactions in Spodosols assessed through density fractionation, radiocarbon analysis, and soil survey information. Soil Science Society of America Journal Accepted 2 November 2018, 83. https://doi.org/10.2136/sssaj2018.06.0227
dc.identifier.citedreferenceMayer, B., Shanley, J. B., Bailey, S. W., & Mitchell, M. J. ( 2010 ). Identifying sources of stream water sulfate after a summer drought in the Sleepers River Watershed (Vermont, USA) using hydrological, chemical, and isotopic techniques. Applied Geochemistry, 25, 747 – 754.
dc.identifier.citedreferenceMcClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., … Pinay, G. ( 2003 ). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301 – 312. https://doi.org/10.1007/s10021‐003‐0161‐9
dc.identifier.citedreferenceMcLaughlin, C., & Kaplan, L. A. ( 2013 ). Biological lability of dissolved organic carbon in stream water and contributing terrestrial sources. Freshwater Science, 32, 1219 – 1230.
dc.identifier.citedreferenceMoatar, F., Abbott, B. W., Minaudo, C., Curie, F., & Pinay, G. ( 2017 ). Elemental properties, hydrology, and biology interact to shape concentration‐discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research, 53, 1270 – 1287.
dc.identifier.citedreferenceMusolff, A., Schmidt, C., Selle, B., & Fleckenstein, J. H. ( 2015 ). Catchment controls on solute export. Advances in Water Resources, 86, 133 – 146.
dc.identifier.citedreferenceNational Atmospheric Deposition Program (NRSP‐3). ( 2018 ). NADP Program Office, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706
dc.identifier.citedreferenceNave, L. E., Drevnick, P. E., Heckman, K. A., Hofmeister, K. L., Veverica, T. J., & Swanston, C. W. ( 2017 ). Soil hydrology, physical and chemical properties and the carbon and mercury in a postglacial lake‐plain wetland. Geoderma, 305, 40 – 52.
dc.identifier.citedreferenceNave, L. E., Gough, C. M., Le Moine, J., & Nadelhoffer, K. J. ( 2018 ). Multi‐decadal trajectories of soil chemistry and nutrient availability following cutting vs. burning disturbances in upper Great Lakes forests. Canadian Journal of Forest Research Accepted 10 December 2018, https://doi.org/10.1139/cjfr‐2018‐0211
dc.identifier.citedreferenceNave, L. E., Gough, C. M., Maurer, K. D., Bohrer, G., Hardiman, B. S., Le Moine, J., … Curtis, P. S. ( 2011 ). Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. Journal of Geophysical Research, 116. G04016
dc.identifier.citedreferenceNave, L. E., Gough, C. M., Perry, C. H., Hofmeister, K. L., Le Moine, J., Domke, G. M., … Nadelhoffer, K. J. ( 2017 ). Physiographic factors underlie rates of biomass production during succession in Great Lakes forest landscapes. Forest Ecology and Management, 397, 157 – 173. https://doi.org/10.1016/j.foreco.2017.04.040
dc.identifier.citedreferenceNave, L. E., Sparks, J. P., Le Moine, J., Hardiman, B. S., Nadelhoffer, K. J., Tallant, J. M., … Curtis, P. S. ( 2014 ). Changes in soil nitrogen cycling in a northern temperate forest ecosystem during succession. Biogeochemistry, 121, 471 – 488. https://doi.org/10.1007/s10533‐014‐0013‐z
dc.identifier.citedreferenceNave, L. E., Vogel, C. S., Gough, C. M., & Curtis, P. S. ( 2009 ). Contribution of atmospheric nitrogen deposition to net primary productivity in a northern hardwood forest. Canadian Journal of Forest Research, 39, 1108 – 1118.
dc.identifier.citedreferencePringle, C. M. ( 2003 ). What is hydrologic connectivity and why is it ecologically important? Hydrological Processes, 17, 2685 – 2698.
dc.identifier.citedreferenceR Core Team. ( 2017 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R‐project.org/
dc.identifier.citedreferenceRaymond, P. A., Saiers, J. E., & Sobczak, W. V. ( 2016 ). Hydrological and biogeochemical controls on watershed dissolved organic matter transport: Pulse‐shunt concept. Ecology, 97, 5 – 16.
dc.identifier.citedreferenceSalmon, C. D., Walter, M. T., Hedin, L. O., & Brown, M. G. ( 2001 ). Hydrological controls on chemical export from an undisturbed old‐growth Chilean forest. Journal of Hydrology, 253, 69 – 80.
dc.identifier.citedreferenceSanderman, J., Lohse, K. A., Baldock, J. A., & Amundson, R. ( 2009 ). Linking soils and streams: Sources and chemistry of dissolved organic matter in a small coastal watershed. Water Resources Research, 45, 1 – 13.
dc.identifier.citedreferenceSchiff, S. L., Aravena, R., Trumbore, S. E., Hinton, M. J., Elgood, R., & Dillon, P. J. ( 1997 ). Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: Clues from 13 C and 14 C. Biogeochemistry, 36, 43 – 65.
dc.identifier.citedreferenceSebestyen, S. D., Boyer, E. W., Shanley, J. B., Kendall, C., Doctor, D. H., Aiken, G. R., & Ohte, N. ( 2008 ). Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest. Water Resources Research, 44, 1 – 14.
dc.identifier.citedreferenceSingh, S., Inamdar, S., & Mitchell, M. ( 2015 ). Changes in dissolved organic matter (DOM) amount and composition along nested headwater stream locations during baseflow and stormflow. Hydrological Processes, 29, 1505 – 1520.
dc.identifier.citedreferenceSpurr, S. H., & Zumberge, J. H. ( 1956 ). Late Pleistocene features of Cheboygan and Emmet counties, Michigan. American Journal of Science, 254, 96 – 109.
dc.identifier.citedreferenceSterner, R. W., Ostrom, P., Ostrom, N. E., Clump, J. V., Steinman, A. D., Dreelin, E. A., … Fisk, A. T. ( 2017 ). Grand challenges for research in the Laurentian Great Lakes. Limnology and Oceanography, 62, 2510 – 2523. https://doi.org/10.1002/lno.10585
dc.identifier.citedreferenceStuiver, M., & Polach, H. A. ( 1977 ). Discussion: Reporting of 14 C data. Radiocarbon, 19, 355 – 363.
dc.identifier.citedreferenceTanentzap, A. J., Kielstra, B. W., Wilkinson, G. M., Berggren, M., Craig, N., del Giorgio, P. A., … Pace, M. L. ( 2017 ). Terrestrial support of lake food webs: Synthesis reveals controls over cross‐ecosystem resource use. Science Advances, 3, 1 – 11.
dc.identifier.citedreferenceTetzlaff, D., Soulsby, C., Bacon, P. J., Youngson, A. F., Gibbins, C., & Malcolm, I. A. ( 2007 ). Connectivity between landscapes and riverscapes—A unifying theme in integrating hydrology and ecology in catchment science? Hydrological Processes, 21, 1385 – 1389. https://doi.org/10.1002/hyp.6701
dc.identifier.citedreferenceThomas, Z., Abbott, B. W., Troccaz, O., Baudry, J., & Pinay, G. ( 2016 ). Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural watersheds. Biogeosciences, 13, 1863 – 1875.
dc.identifier.citedreferenceThompson, S. E., Basu, N. B., Lascurain, J., Aubeneau, A., & Rao, P. S. C. ( 2011 ). Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resources Research, 47, W00J5.
dc.identifier.citedreferenceTockner, K., Penntzdorfer, D., Reiner, N., Schiemer, F., & Ward, J. W. ( 1999 ). Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river‐floodplain system (Danube, Austria). Freshwater Biology, 41, 521 – 535.
dc.identifier.citedreferenceTripler, C. E., Kaushal, S. S., Likens, G. E., & Walter, M. T. ( 2006 ). Patterns in potassium dynamics in forest ecosystems. Ecology Letters, 9, 451 – 466.
dc.identifier.citedreferenceVogel, J. S., Southon, J. R., & Nelson, D. E. ( 1987 ). Catalyst and binder effects in the use of filamentous graphite for AMS. Nuclear Instruments and Methods in Physics Research Section B, 29, 50 – 56.
dc.identifier.citedreferenceWalling, D. E., & Webb, B. W. ( 1983 ). The dissolved load of rivers: A global overview. In B. W. Webb (Ed.), Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships (Vol. 41 ) (pp. 3 – 20 ). Wallingford, Oxfordshire; Publ: International Association of Hydrological Sciences.
dc.identifier.citedreferenceWilliams, E. L., Szramek, K. J., Jin, L., Ku, T. C. W., & Walter, L. M. ( 2007 ). The carbonate system geochemistry of shallow groundwater‐surface water systems in temperate glaciated watersheds (Michigan, USA): Significance of open‐system dolomite weathering. GSA Bulletin, 119, 515 – 528. https://doi.org/10.1130/B25967.1
dc.identifier.citedreferenceWilliams, G. P. ( 1989 ). Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology, 111, 89 – 106.
dc.identifier.citedreferenceAchat, D. L., Bakker, M. R., Zeller, B., Pellerin, S., Bienamie, S., & Morel, C. ( 2010 ). Long‐term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization. Soil Biology & Biogeochemistry, 42, 1479 – 1490. https://doi.org/10.1016/j.soilbio.2010.05.020
dc.identifier.citedreferenceAdams, M. A., Attiwill, P. M., & Polglase, P. J. ( 1989 ). Availability of nitrogen and phosphorus in forest soils in northeastern Tasmania. Biology and Fertility of Soils, 8, 212 – 218.
dc.identifier.citedreferenceAdams, P. W., & Boyle, J. R. ( 1979 ). Cation release from Michigan Spodosols leached with aspen leaf extracts. Soil Science Society of America Journal, 43, 593 – 596.
dc.identifier.citedreferenceAdams, P. W., & Boyle, J. R. ( 1982 ). The quantity and quality of nutrient cations in some Michigan Spodosols. Soil Science, 133, 383 – 389.
dc.identifier.citedreferenceAlexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., & Moore, R. B. ( 2007 ). The role of headwater streams in downstream water quality. Journal of the American Water Resources Association, 43, 41 – 59.
dc.identifier.citedreferenceAndrews, D. M., Lin, H., Zhu, Q., Jin, L., & Brantley, S. L. ( 2011 ). Hot spots and hot moments of dissolved organic carbon export and soil organic carbon storage in the Shale Hills catchment. Vadose Zone Journal, 10, 943 – 954.
dc.identifier.citedreferenceBasu, N., Destouni, G., Jawitz, J., Thompson, S., Loukinova, N., Darracq, A., … Rao, R. ( 2010 ). Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters, 37, L23404, n/a – n/a.
dc.identifier.citedreferenceBernhardt, E. S., Likens, G. E., Hall, R. O. Jr., Buso, D. C., Fisher, S. G., Burton, T. M., … Lowe, W. H. ( 2005 ). Can’t see the forest for the stream? In‐stream processing and terrestrial nitrogen exports. Bioscience, 55, 219 – 230. https://doi.org/10.1641/0006-3568(2005)055%5B0219:ACSTFF%5D2.0.CO;2
dc.identifier.citedreferenceBiddanda, B. A., & Cotner, J. B. ( 2002 ). Love handles in aquatic ecosystems: The role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems, 5, 431 – 445.
dc.identifier.citedreferenceBigelow, S. W., & Canham, C. D. ( 2015 ). Litterfall as a niche construction process in a northern hardwood forest. Ecosphere, 6, 1 – 14.
dc.identifier.citedreferenceBlewett, W. L., & Winters, H. A. ( 1995 ). The importance of glaciofluvial features within Michigan’s Port Huron moraine. Annals of the Association of American Geographers, 85, 306 – 319.
dc.identifier.citedreferenceBoyer, E. W., Hornberger, G. M., Bencala, K. E., & McKnight, D. M. ( 1997 ). Response characteristics of DOC flushing in an alpine catchment. Hydrological Processes, 11, 1635 – 1647.
dc.identifier.citedreferenceBrinson, M. M. ( 1993 ). Changes in the functioning of wetlands along environmental gradients. Wetlands, 13, 65 – 74.
dc.identifier.citedreferenceBrown, V. A., McDonnell, J. J., Burns, D. A., & Kendall, C. ( 1999 ). The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. Journal of Hydrology, 217, 171 – 190.
dc.identifier.citedreferenceBurns, D. A., Boyer, E. W., Elliott, E. M., & Kendall, C. ( 2009 ). Sources and transformations of nitrate from streams draining varying land uses: evidence from dual isotope analysis. Journal of Environmental Quality, 38, 1149 – 1159.
dc.identifier.citedreferenceCarpenter, S. R., Cole, J. J., Pace, M. L., Van de Bogert, M., Bade, D. L., Bastviken, D., … Kritzberg, E. S. ( 2005 ). Ecosystem subsidies: Terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology, 86, 2737 – 2750. https://doi.org/10.1890/04‐1282
dc.identifier.citedreferenceCreed, I. F., McKnight, D. M., Pellerin, B. A., Green, M. B., Bergamaschi, B. A., Aiken, G. R., … Stackpoole, S. M. ( 2015 ). The river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum. Canadian Journal of Fisheries and Aquatic Sciences, 72, 1272 – 1285. https://doi.org/10.1139/cjfas‐2014‐0400
dc.identifier.citedreferenceDavis, J. C., Proctor, I. D., Southon, J. R., Caffee, M. W., Heikkinen, D. W., Roberts, M. L., … Vogel, J. S. ( 1990 ). LLNL/US AMS facility and research program. Nuclear Instruments and Methods in Physics Research Section B, 52, 269 – 272. https://doi.org/10.1016/0168‐583X(90)90419‐U
dc.identifier.citedreferenceDiamond, J. S., & Cohen, M. J. ( 2018 ). Complex patterns of solute‐discharge relationships for coastal plain rivers. Hydrological Processes, 32, 388 – 401.
dc.identifier.citedreferenceDittman, J. A., Driscoll, C. T., Groffman, P. M., & Fahey, T. J. ( 2007 ). Dynamics of nitrogen and dissolved organic carbon at the Hubbard Brook experimental forest. Ecology, 88, 1153 – 1166.
dc.identifier.citedreferenceDowning, J. A., Cole, J. J., Duarte, C. M., Middelburg, J. J., Melack, J. M., Prairie, Y. T., … Tranvik, L. J. ( 2012 ). Global abundance and size distribution of streams and rivers. Inland Waters, 2, 229 – 236. https://doi.org/10.5268/IW‐2.4.502
dc.identifier.citedreferenceDuncan, J. M., Band, L. E., & Groffman, P. M. ( 2017 ). Variable nitrate concentration‐discharge relationships in a forested watershed. Hydrological Processes, 31, 1817 – 1824.
dc.identifier.citedreferenceDupas, R., Musolff, A., Jawitz, J. W., Rao, P. S. C., Jager, C. G., Fleckenstein, J. H., … Borchardt, D. ( 2017 ). Carbon and nutrient export regimes from headwater catchments to downstream reaches. Biogeosciences, 14, 4391 – 4407. https://doi.org/10.5194/bg‐14‐4391‐2017
dc.identifier.citedreferenceEdwards, A. M. C. ( 1973 ). The variation of dissolved constituents with discharge in some Norfolk rivers. Journal of Hydrology, 18, 219 – 242.
dc.identifier.citedreferenceElder, J. F., Rybicki, N. B., Carter, V., & Weintraub, V. ( 2000 ). Sources and yields of dissolved carbon in Northern Wisconsin stream catchments with differing amounts of peatland. Wetlands, 20, 113 – 125.
dc.identifier.citedreferenceFarrell, E. P. ( 1995 ). Atmospheric deposition in maritime environments and its impact on terrestrial ecosystems. Water, Air, and Soil Pollution, 85, 123 – 130.
dc.identifier.citedreferenceFoster, I. D. L., & Walling, D. E. ( 1978 ). Effects of 1976 drought and autumn rainfall on stream solute levels. Earth Surface Processes, 3, 393 – 406.
dc.identifier.citedreferenceFreeman, M. C., Pringle, C. M., & Jackson, C. R. ( 2007 ). Hydrologic connectivity and the contribution of small headwaters to ecological integrity at regional scales. Journal of the American Water Resources Association, 43, 5 – 14.
dc.identifier.citedreferenceFrost, P. C., Kinsman, L. E., Johnston, C. A., & Larson, J. H. ( 2009 ). Watershed discharge modulates relationships between landscape components and nutrient ratios in stream seston. Ecology, 90, 1631 – 1640.
dc.identifier.citedreferenceGalloway, J. N., & Cowling, E. B. ( 2002 ). Reactive nitrogen and the world: 200 years of change. Ambio: A Journal of the Human Environment, 31, 64 – 71.
dc.identifier.citedreferenceGannon, J. P., Bailey, S. W., McGuire, K. J., & Shanley, J. B. ( 2015 ). Flushing of distal hillslopes as an alternative source of stream dissolved organic carbon in a headwater catchment. Water Resources Research, 51, 8114 – 8128.
dc.identifier.citedreferenceGodsey, S. E., Kirchner, J. W., & Clow, D. W. ( 2009 ). Concentration‐discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes, 23, 1844 – 1864.
dc.identifier.citedreferenceGomi, T., Sidle, R. C., & Richardson, J. S. ( 2002 ). Understanding processes and downstream linkages of headwater systems. Bioscience, 52, 905 – 916.
dc.identifier.citedreferenceGrabs, T., Bishop, K., Laudon, H., Lyon, S. W., & Seibert, J. ( 2012 ). Riparian zone hydrology and soil water total organic carbon (TOC): Implications for spatial variability and upscaling of lateral riparian TOC exports. Biogeosciences, 9, 3901 – 3916.
dc.identifier.citedreferenceHarvey, J., & Gooseff, M. ( 2015 ). River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resources Research, 51, 6893 – 6922.
dc.identifier.citedreferenceHeckman, K., Throckmorton, H., Clingensmith, C., Vila, F. J. G., Horwath, W. R., Knicker, H., & Rasmussen, C. ( 2014 ). Factors affecting the molecular structure and mean residence time of occluded organics in a lithosequence of soils under ponderosa pine. Soil Biology & Biochemistry, 77, 1 – 11.
dc.identifier.citedreferenceHerndon, E. M., Dere, A. L., Sullivan, P. L., Norris, D., Reynolds, B., & Brantley, S. L. ( 2015 ). Landscape heterogeneity drives contrasting concentration‐discharge relationships in shale headwater catchments. Hydrology and Earth System Sciences, 19, 3333 – 3347.
dc.identifier.citedreferenceHoagland, B., Russo, T. A., Gu, X., Hill, L., Kaye, J., Forsythe, B., & Brantley, S. L. ( 2017 ). Hyporheic zone influences on concentration‐discharge relationships in a headwater sandstone stream. Water Resources Research, 53, 4643 – 4667.
dc.identifier.citedreferenceHornberger, G. M., Bencala, K. E., & McKnight, D. M. ( 1994 ). Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado. Biogeochemistry, 25, 147 – 165.
dc.identifier.citedreferenceHunsaker, C. T., & Johnson, D. W. ( 2017 ). Concentration‐discharge relationships in headwater streams of the Sierra Nevada, California. Water Resources Research, 53, 7869 – 7884.
dc.identifier.citedreferenceInamdar, S. P., Christopher, S. F., & Mitchell, M. J. ( 2004 ). Export mechanisms for dissolved organic carbon and nitrate during summer storm events in a glaciated forested catchment in New York, USA. Hydrological Processes, 18, 2651 – 2661.
dc.identifier.citedreferenceJin, L., Williams, E., Szramek, K., Walter, L. M., & Hamilton, S. K. ( 2008 ). Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances on soil water geochemistry. Geochemica et Cosmochimica Acta, 72, 1027 – 1042.
dc.identifier.citedreferenceJohnson, D. W. ( 1984 ). Sulfur cycling in forests. Biogeochemistry, 1, 29 – 43.
dc.identifier.citedreferenceJones, A.L., & Sroka, B.N. ( 1997 ). Effects of highway deicing chemicals on shallow unconsolidated aquifers in Ohio, interim report, 1988‐93. U.S. Geological Survey Water‐Resources Investigations Report 97‐4027, 139 pp.
dc.identifier.citedreferenceJonsson, A., Algesten, G., Bergstrom, A.‐K., Bishop, K., Sobek, S., Tranvik, L. J., & Jansson, M. ( 2007 ). Integrating aquatic carbon fluxes in a boreal catchment carbon budget. Journal of Hydrology, 334, 141 – 150.
dc.identifier.citedreferenceKilpatrick, F.A., & Schneider, V.R. ( 1983 ). Use of flumes in measuring discharge: U.S. Geological Survey Techniques of Water‐Resources Investigations, Book 3, chap. A14, 46 pp.
dc.identifier.citedreferenceKim, H., Dietrich, W. E., Thurnhoffer, B. M., Bishop, J. K. B., & Fung, I. Y. ( 2017 ). Controls on solute concentration‐discharge relationships revealed by simultaneous hydrochemistry observations of hillslope runoff and stream flow: The importance of critical zone structure. Water Resources Research, 53, 1424 – 1443.
dc.identifier.citedreferenceLambert, T., Pierson‐Wickmann, A., Gruau, G., Thibault, J., & Jaffrezic, A. ( 2011 ). Carbon isotopes as tracers of dissolved organic carbon sources and water pathways in headwater catchments. Journal of Hydrology, 402, 228 – 238.
dc.identifier.citedreferenceLambert, T., Pierson‐Wickmann, A.‐C., Gruau, G., Jaffrezic, A., Petitjean, P., Thibault, J. N., & Jeanneau, L. ( 2014 ). DOC sources and DOC transport pathways in a small headwater catchment as revealed by carbon isotope fluctuation during storm events. Biogeosciences, 11, 3043 – 3056.
dc.identifier.citedreferenceLapin, M., & Barnes, B. V. ( 1995 ). Using the landscape ecosystem approach to assess species and ecosystem diversity. Conservation Biology, 9, 1148 – 1158.
dc.identifier.citedreferenceLeopold, L. B., Wolman, M. G., & Miller, J. P. ( 1964 ). Fluvial Processes in Geomorphology. San Francisco: W.H. Freeman and Company.
dc.identifier.citedreferenceLikens, G. E., Bormann, F. H., Johnson, N. M., & Pierce, R. S. ( 1967 ). The calcium, magnesium, potassium, and sodium budgets for a small forested ecosystem. Ecology, 48, 772 – 785.
dc.identifier.citedreferenceLikens, G. E., Driscoll, C. T., Buso, D. C., Siccama, T. G., Johnson, C. E., Lovett, G. M., … Bailey, S. W. ( 1998 ). The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry, 41, 89 – 173. https://doi.org/10.1023/A:1005984620681
dc.identifier.citedreferenceLikens, G. E., Driscoll, C. T., Buso, D. C., Siccama, T. G., Johnson, C. E., Lovett, G. M., … Reiners, W. A. ( 1994 ). The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry, 25, 61 – 126.
dc.identifier.citedreferenceLottig, N. R., Buffam, I., & Stanley, E. H. ( 2013 ). Comparisons of wetland and drainage lake influences on stream dissolved carbon concentrations and yields in a north temperate lake‐rich region. Aquatic Sciences, 75, 619 – 630.
dc.identifier.citedreferenceLuczaj, J., & Masarik, K. ( 2015 ). Groundwater quantity and quality issues in a water‐rich region: Examples from Wisconsin, USA. Resources, 4, 323 – 357.
dc.identifier.citedreferenceMacDonald, L. H., & Coe, D. ( 2007 ). Influence of headwater streams on downstream reaches in forested areas. Forest Science, 53, 148 – 168.
dc.identifier.citedreferenceMarcarelli, A. M., Coble, A. A., Meingast, K. M., Kane, E. S., Brooks, C. N., Buffam, I., … Stottlemyer, R. ( 2018 ). Of small streams and Great Lakes: Integrating tributaries to understand the ecology and biogeochemistry to Lake Superior. Journal of the American Water Resources Association, 1 – 17.
dc.identifier.citedreferenceMarx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., van Geldern, R., … Barth, J. A. C. ( 2017 ). A review of CO 2 and associated carbon dynamics in headwater streams: A global perspective. Reviews of Geophysics, 55, 560 – 585. https://doi.org/10.1002/2016RG000547
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.