Show simple item record

Longitudinal associations between conflict monitoring and emergent academic skills: An event‐related potentials study

dc.contributor.authorIsbell, Elif
dc.contributor.authorCalkins, Susan D.
dc.contributor.authorCole, Veronica T.
dc.contributor.authorSwingler, Margaret M.
dc.contributor.authorLeerkes, Esther M.
dc.date.accessioned2019-05-31T18:25:23Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationIsbell, Elif; Calkins, Susan D.; Cole, Veronica T.; Swingler, Margaret M.; Leerkes, Esther M. (2019). "Longitudinal associations between conflict monitoring and emergent academic skills: An event‐related potentials study." Developmental Psychobiology 61(4): 495-512.
dc.identifier.issn0012-1630
dc.identifier.issn1098-2302
dc.identifier.urihttps://hdl.handle.net/2027.42/149228
dc.description.abstractIdentifying the links between specific cognitive functions and emergent academic skills can help determine pathways to support both early academic performance and later academic achievement. Here, we investigated the longitudinal associations between a key aspect of cognitive control, conflict monitoring, and emergent academic skills from preschool through first grade, in a large sample of socioeconomically diverse children (N = 261). We recorded event‐related potentials (ERPs) during a Go/No‐Go task. The neural index of conflict monitoring, ΔN2, was defined as larger N2 mean amplitudes for No‐Go versus Go trials. ΔN2 was observed over the right hemisphere across time points and showed developmental stability. Cross‐lagged panel models revealed prospective links from ΔN2 to later math performance, but not reading performance. Specifically, larger ΔN2 at preschool predicted higher kindergarten math performance, and larger ΔN2 at kindergarten predicted higher first‐grade math performance, above and beyond the behavioral performance in the Go/No‐Go task. Early academic skills did not predict later ΔN2. These findings provided electrophysiological evidence for the contribution of conflict monitoring abilities to emergent math skills. In addition, our findings suggested that neural indices of cognitive control can provide additional information in predicting emergent math skills, above and beyond behavioral task performance.
dc.publisherJohn Benjamins
dc.publisherWiley Periodicals, Inc.
dc.subject.otherconflict monitoring
dc.subject.otherΔN2
dc.subject.otherGo/No‐Go
dc.subject.otherevent‐related potentials
dc.subject.otheremergent math and reading skills
dc.titleLongitudinal associations between conflict monitoring and emergent academic skills: An event‐related potentials study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149228/1/dev21809.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149228/2/dev21809_am.pdf
dc.identifier.doi10.1002/dev.21809
dc.identifier.sourceDevelopmental Psychobiology
dc.identifier.citedreferencePurpura, D. J., Baroody, A. J., & Lonigan, C. J. ( 2013 ). The transition from informal to formal mathematical knowledge: Mediation by numeral knowledge. Journal of Educational Psychology, 105 ( 2 ), 453. https://doi.org/10.1037/a0031753
dc.identifier.citedreferenceLyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. ( 2014 ). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17 ( 5 ), 714 – 726. https://doi.org/10.1111/desc.12152
dc.identifier.citedreferenceManly, T., Robertson, I. H., Galloway, M., & Hawkins, K. ( 1999 ). The absent mind: Further investigations of sustained attention to response. Neuropsychologia, 37 ( 6 ), 661 – 670. https://doi.org/10.1016/S0028-3932(98)00127-4
dc.identifier.citedreferenceMuthén, L. K., & Muthén, B. O. ( 1998 ‐2017). Mplus User’s Guide (8th ed.). Los Angeles, CA: Muthén & Muthén.
dc.identifier.citedreferenceNieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. ( 2004 ). Electrophysiological correlates of anterior cingulate function in a go/no‐go task: Effects of response conflict and trial type frequency. Cognitive, Affective & Behavioral Neuroscience, 3 ( 1 ), 17 – 26. https://doi.org/10.3758/CABN.3.1.17
dc.identifier.citedreferenceOddy, B. W., Barry, R. J., Johnstone, S. J., & Clarke, A. R. ( 2005 ). Removal of CNV effects from the N2 and P3 ERP components in a visual Go/NoGo task. Journal of Psychophysiology, 19 ( 1 ), 24 – 34. https://doi.org/10.1027/0269-8803.19.1.24.
dc.identifier.citedreferencePeters, S., Van der Meulen, M., Zanolie, K., & Crone, E. A. ( 2017 ). Predicting reading and mathematics from neural activity for feedback learning. Developmental Psychology, 53 ( 1 ), 149. https://doi.org/10.1037/dev0000234
dc.identifier.citedreferencePurpura, D. J., Schmitt, S. A., & Ganley, C. M. ( 2017 ). Foundations of mathematics and literacy: The role of executive functioning components. Journal of Experimental Child Psychology, 153, 15 – 34. https://doi.org/10.1016/j.jecp.2016.08.010.
dc.identifier.citedreferenceRandall, W. M., & Smith, J. L. ( 2011 ). Conflict and inhibition in the cued‐Go/NoGo task. Clinical Neurophysiology, 122 ( 12 ), 2400 – 2407. https://doi.org/10.1016/j.clinph.2011.05.012.
dc.identifier.citedreferenceRidderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. ( 2004 ). The role of the medial frontal cortex in cognitive control. Science, 306 ( 5695 ), 443 – 447.
dc.identifier.citedreferenceRoberts, G., & Bryant, D. ( 2011 ). Early mathematics achievement trajectories: English‐language learner and native English‐speaker estimates, using the early childhood longitudinal survey. Developmental Psychology, 47 ( 4 ), 916. https://doi.org/10.1037/a0023865
dc.identifier.citedreferenceRohrbaugh, J. W., Syndulko, K., & Lindsley, D. B. ( 1976 ). Brain wave components of the contingent negative variation in humans. Science, 191 ( 4231 ), 1055 – 1057.
dc.identifier.citedreferenceRuberry, E. J., Lengua, L. J., Crocker, L. H., Bruce, J., Upshaw, M. B., & Sommerville, J. A. ( 2017 ). Income, neural executive processes, and preschool children’s executive control. Development and Psychopathology, 29 ( 1 ), 143 – 154. https://doi.org/10.1017/S095457941600002X
dc.identifier.citedreferenceSchaeffer, C. M., Petras, H., Ialongo, N., Poduska, J., & Kellam, S. ( 2003 ). Modeling growth in boys’ aggressive behavior across elementary school: Links to later criminal involvement, conduct disorder, and antisocial personality disorder. Developmental Psychology, 39 ( 6 ), 1020. https://doi.org/10.1037/0012-1649.39.6.1020
dc.identifier.citedreferenceSchmitt, S. A., Geldhof, G. J., Purpura, D. J., Duncan, R., & McClelland, M. M. ( 2017 ). Examining the relations between executive function, math, and literacy during the transition to kindergarten: A multi‐analytic approach. Journal of Educational Psychology, 109 ( 8 ), 1120. https://doi.org/10.1037/edu0000193
dc.identifier.citedreferenceSelig, J. P., & Little, T. D. ( 2012 ). Autoregressive and cross‐lagged panel analysis for longitudinal data. In B. Laursen, T. D. Little, & N. A. Card, (Eds.), Handbook of developmental research methods (pp. 265 – 278 ). New York, NY: Guilford Press.
dc.identifier.citedreferenceShahaf, G., Fisher, T., Aharon‐Peretz, J., & Pratt, H. ( 2015 ). Comprehensive analysis suggests simple processes underlying EEG/ERP–demonstration with the go/no‐go paradigm in ADHD. Journal of Neuroscience Methods, 239, 183 – 193. https://doi.org/10.1016/j.jneumeth.2014.10.016
dc.identifier.citedreferenceSmith, J. L., Johnstone, S. J., & Barry, R. J. ( 2004 ). Inhibitory processing during the go/nogo task: An ERP analysis of children with attention‐deficit/hyperactivity disorder. Clinical Neurophysiology, 115 ( 6 ), 1320 – 1331. https://doi.org/10.1016/j.clinph.2003.12.027
dc.identifier.citedreferenceStanislaw, H., & Todorov, N. ( 1999 ). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31 ( 1 ), 137 – 149. https://doi.org/10.3758/BF03207704
dc.identifier.citedreferenceSwick, D., Ashley, V., & Turken, U. ( 2011 ). Are the neural correlates of stopping and not going identical? Quantitative meta‐analysis of two response inhibition tasks. NeuroImage, 56 ( 3 ), 1655 – 1665. https://doi.org/10.1016/j.neuroimage.2011.02.070.
dc.identifier.citedreferenceTabachnick, B. G., & Fidell, L. S. ( 2007 ). Using multivariate statistics. Boston, MA: Pearson/Allyn & Bacon.
dc.identifier.citedreferenceU.S. Census Bureau. ( 2010 ). Profile of General Population and Housing Characteristics. Retrieved from https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pxml:id=DEC_10_SF1_SF1DP1&prodType=table.
dc.identifier.citedreferenceVanderwert, R. E., Zeanah, C. H., Fox, N. A., & Nelson, C. A. ( 2016 ). Normalization of EEG activity among previously institutionalized children placed into foster care: A 12‐year follow‐up of the Bucharest Early Intervention Project. Developmental Cognitive Neuroscience, 17, 68 – 75. https://doi.org/10.1016/j.dcn.2015.12.004.
dc.identifier.citedreferenceWalter, W. G. ( 1964 ). Contingent negative variation: An electric sign of sensori‐motor association and expectancy in the human brain. Nature, 230, 380 – 384. https://doi.org/10.1038/203380a0
dc.identifier.citedreferenceWatts, T. W., Duncan, G. J., Chen, M., Claessens, A., Davis‐Kean, P. E., Duckworth, K., … Susperreguy, M. I. ( 2015 ). The role of mediators in the development of longitudinal mathematics achievement associations. Child Development, 86 ( 6 ), 1892 – 1907. https://doi.org/10.1111/cdev.12416.
dc.identifier.citedreferenceWoodcock, R. W., McGrew, K. S., & Mather, N. ( 2001 ). Woodcock‐Johnson III. Ithasca, IL: Riverside Publishing.
dc.identifier.citedreferenceBenikos, N., & Johnstone, S. J. ( 2009 ). Arousal‐state modulation in children with AD/HD. Clinical Neurophysiology, 120 ( 1 ), 30 – 40. https://doi.org/10.1016/j.clinph.2008.09.026
dc.identifier.citedreferenceBenikos, N., Johnstone, S. J., & Roodenrys, S. J. ( 2013 ). Varying task difficulty in the Go/Nogo task: The effects of inhibitory control, arousal, and perceived effort on ERP components. International Journal of Psychophysiology, 87 ( 3 ), 262 – 272. https://doi.org/10.1016/j.ijpsycho.2012.08.005
dc.identifier.citedreferenceBlair, C., & Razza, R. P. ( 2007 ). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78 ( 2 ), 647 – 663. https://doi.org/10.1111/j.1467-8624.2007.01019.x
dc.identifier.citedreferenceBlair, C., Ursache, A., Greenberg, M., & Vernon‐Feagans, L. ( 2015 ). Multiple aspects of self‐regulation uniquely predict mathematics but not letter–word knowledge in the early elementary grades. Developmental Psychology, 51 ( 4 ), 459. https://doi.org/10.1037/a0038813.
dc.identifier.citedreferenceBotvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. ( 2001 ). Conflict monitoring and cognitive control. Psychological Review, 108 ( 3 ), 624. https://doi.org/10.1037/0033-295X.108.3.624
dc.identifier.citedreferenceBotvinick, M. M., Cohen, J. D., & Carter, C. S. ( 2004 ). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8 ( 12 ), 539 – 546. https://doi.org/10.1016/j.tics.2004.10.003
dc.identifier.citedreferenceBrod, G., Bunge, S. A., & Shing, Y. L. ( 2017 ). Does one year of schooling improve children’s cognitive control and alter associated brain activation? Psychological Science, 28, 967 – 978. https://doi.org/10.1177/0956797617699838.
dc.identifier.citedreferenceBull, R., Espy, K. A., & Wiebe, S. A. ( 2008 ). Short‐term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33 ( 3 ), 205 – 228. https://doi.org/10.1080/87565640801982312
dc.identifier.citedreferenceCarter, C. S., & van Veen, V. ( 2007 ). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7 ( 4 ), 367 – 379. https://doi.org/10.3758/CABN.7.4.367.
dc.identifier.citedreferenceCastles, A., Rastle, K., & Nation, K. ( 2018 ). Ending the reading wars: Reading acquisition from novice to expert. Psychological Science in the Public Interest, 19 ( 1 ), 5 – 51. https://doi.org/10.1177/1529100618772271
dc.identifier.citedreferenceClements, D. H., Sarama, J., & Germeroth, C. ( 2016 ). Learning executive function and early mathematics: Directions of causal relations. Early Childhood Research Quarterly, 36, 79 – 90. https://doi.org/10.1016/j.ecresq.2015.12.009
dc.identifier.citedreferenceCragg, L., Fox, A., Nation, K., Reid, C., & Anderson, M. ( 2009 ). Neural correlates of successful and partial inhibitions in children: An ERP study. Developmental Psychobiology, 51 ( 7 ), 533 – 543. https://doi.org/10.1002/dev.20391
dc.identifier.citedreferenceCragg, L., & Nation, K. ( 2008 ). Go or no‐go? Developmental improvements in the efficiency of response inhibition in mid‐childhood. Developmental Science, 11 ( 6 ), 819 – 827. https://doi.org/10.1111/j.1467-7687.2008.00730.x.
dc.identifier.citedreferenceDelorme, A., & Makeig, S. ( 2004 ). EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134 ( 1 ), 9 – 21. https://doi.org/10.1016/j.jneumeth.2003.10.009.
dc.identifier.citedreferenceDonkers, F. C. L., & Van Boxtel, G. J. M. ( 2004 ). The N2 in go/no‐go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56 ( 2 ), 165 – 176. https://doi.org/10.1016/j.bandc.2004.04.005
dc.identifier.citedreferenceDumontheil, I., & Klingberg, T. ( 2011 ). Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later. Cerebral Cortex, 22 ( 5 ), 1078 – 1085. https://doi.org/10.1093/cercor/bhr175
dc.identifier.citedreferenceDuncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., … Japel, C. ( 2007 ). School readiness and later achievement. Developmental Psychology, 43 ( 6 ), 1428 – 1446. https://doi.org/10.1037/0012-1649.43.6.1428.
dc.identifier.citedreferenceEhri, L. C. ( 2017 ). Orthographic mapping and literacy development revisited. In K. Cain, D. L. Compton, & R. K. Parrila (Eds.), Theories of reading development (pp. 169 – 190 ). Amsterdam, the Netherlands: John Benjamins.
dc.identifier.citedreferenceEnriquez‐Geppert, S., Konrad, C., Pantev, C., & Huster, R. J. ( 2010 ). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop‐signal task. NeuroImage, 51 ( 2 ), 877 – 887. https://doi.org/10.1016/j.neuroimage.2010.02.043.
dc.identifier.citedreferenceFalkenstein, M., Hoormann, J., & Hohnsbein, J. ( 1999 ). ERP components in go/nogo tasks and their relation to inhibition. Acta Psychologica, 101 ( 2–3 ), 267 – 291. https://doi.org/10.1016/S0001-6918(99)00008-6
dc.identifier.citedreferenceFisher, T., Aharon‐Peretz, J., & Pratt, H. ( 2011 ). Dis‐regulation of response inhibition in adult attention deficit hyperactivity disorder (ADHD): An ERP study. Clinical Neurophysiology, 122 ( 12 ), 2390 – 2399. https://doi.org/10.1016/j.clinph.2011.05.010
dc.identifier.citedreferenceFolstein, J. R., & Van Petten, C. ( 2008 ). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45 ( 1 ), 152 – 170.
dc.identifier.citedreferenceFuhs, M. W., Nesbitt, K. T., Farran, D. C., & Dong, N. ( 2014 ). Longitudinal associations between executive functioning and academic skills across content areas. Developmental Psychology, 50 ( 6 ), 1698. https://doi.org/10.1037/a0036633
dc.identifier.citedreferenceGroom, M. J., & Cragg, L. ( 2015 ). Differential modulation of the N2 and P3 event‐related potentials by response conflict and inhibition. Brain and Cognition, 97, 1 – 9. https://doi.org/10.1016/j.bandc.2015.04.004.
dc.identifier.citedreferenceHoeft, F., Ueno, T., Reiss, A. L., Meyler, A., Whitfield‐Gabrieli, S., Glover, G. H., … Jo, B. ( 2007 ). Prediction of children’s reading skills using behavioral, functional, and structural neuroimaging measures. Behavioral Neuroscience, 121 ( 3 ), 602. https://doi.org/10.1037/0735-7044.121.3.602
dc.identifier.citedreferenceHowell, S. C., & Kemp, C. R. ( 2010 ). Assessing preschool number sense: Skills demonstrated by children prior to school entry. Educational Psychology, 30 ( 4 ), 411 – 429. https://doi.org/10.1080/01443411003695410
dc.identifier.citedreferenceHoyniak, C. ( 2017 ). Changes in the NoGo N2 event‐related potential component across childhood: A systematic review and meta‐analysis. Developmental Neuropsychology, 42 ( 1 ), 1 – 24. https://doi.org/10.1080/87565641.2016.1247162.
dc.identifier.citedreferenceJohnstone, S. J., Dimoska, A., Smith, J. L., Barry, R. J., Pleffer, C. B., Chiswick, D., & Clarke, A. R. ( 2007 ). The development of stop‐signal and go/nogo response inhibition in children aged 7–12 years: Performance and event‐related potential indices. International Journal of Psychophysiology, 63 ( 1 ), 25 – 38.
dc.identifier.citedreferenceJonkman, L. M. ( 2006 ). The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood: A Go/NoGo ERP study. Brain Research, 1097 ( 1 ), 181 – 193. https://doi.org/10.1016/j.brainres.2006.04.064.
dc.identifier.citedreferenceJordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. ( 2009 ). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45 ( 3 ), 850. https://doi.org/10.1037/a0014939
dc.identifier.citedreferenceKenny, D. A. ( 1979 ). Correlation and causality. New York, NY: Wiley.
dc.identifier.citedreferenceKool, W., Shenhav, A., & Botvinick, M. M. ( 2017 ). Cognitive control as cost‐benefit decision making. In T. Egner (Ed.), The Wiley handbook of cognitive control (pp. 167 – 189 ). West Sussex, UK: John Wiley & Sons.
dc.identifier.citedreferenceKrajewski, K., & Schneider, W. ( 2009 ). Early development of quantity to number‐word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four‐year longitudinal study. Learning and Instruction, 19 ( 6 ), 513 – 526. https://doi.org/10.1016/j.learninstruc.2008.10.002.
dc.identifier.citedreferenceLahat, A., Todd, R. M., Mahy, C. E. V., Lau, K., & Zelazo, P. D. ( 2010 ). Neurophysiological correlates of executive function: A comparison of European‐Canadian and Chinese‐Canadian 5‐year‐old children. Frontiers in Human Neuroscience, 3, 72. https://doi.org/10.3389/neuro.09.072.2009.
dc.identifier.citedreferenceLamm, C., Walker, O. L., Degnan, K. A., Henderson, H. A., Pine, D. S., McDermott, J. M., & Fox, N. A. ( 2014 ). Cognitive control moderates early childhood temperament in predicting social behavior in 7‐year‐old children: An ERP study. Developmental Science, 17 ( 5 ), 667 – 681. https://doi.org/10.1111/desc.12158.
dc.identifier.citedreferenceLamm, C., Zelazo, P. D., & Lewis, M. D. ( 2006 ). Neural correlates of cognitive control in childhood and adolescence: Disentangling the contributions of age and executive function. Neuropsychologia, 44 ( 11 ), 2139 – 2148. https://doi.org/10.1016/j.neuropsychologia.2005.10.013.
dc.identifier.citedreferenceLo, S. L. ( 2018 ). A meta‐analytic review of the event‐related potentials (ERN and N2) in childhood and adolescence: Providing a developmental perspective on the conflict monitoring theory. Developmental Review, 48, 82 – 112. https://doi.org/10.1016/j.dr.2018.03.005
dc.identifier.citedreferenceLopez‐Calderon, J., & Luck, S. J. ( 2014 ). ERPLAB: An open‐source toolbox for the analysis of event‐related potentials. Frontiers in Human Neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213.
dc.identifier.citedreferenceLucci, G., Berchicci, M., Perri, R. L., Spinelli, D., & Di Russo, F. ( 2016 ). Effect of target probability on pre‐stimulus brain activity. Neuroscience, 322, 121 – 128. https://doi.org/10.1016/j.neuroscience.2016.02.029.
dc.identifier.citedreferenceLuck, S. J. ( 2014 ). An introduction to the event‐related potential technique. Cambridge, MA: MIT Press.
dc.identifier.citedreferenceLuck, S. J., & Gaspelin, N. ( 2017 ). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology, 54 ( 1 ), 146 – 157.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.