Show simple item record

Cholinergic system changes of falls and freezing of gait in Parkinson’s disease

dc.contributor.authorBohnen, Nicolaas I.
dc.contributor.authorKanel, Prabesh
dc.contributor.authorZhou, Zhi
dc.contributor.authorKoeppe, Robert A.
dc.contributor.authorFrey, Kirk A.
dc.contributor.authorDauer, William T.
dc.contributor.authorAlbin, Roger L.
dc.contributor.authorMüller, Martijn L.t.m.
dc.date.accessioned2019-05-31T18:25:42Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationBohnen, Nicolaas I.; Kanel, Prabesh; Zhou, Zhi; Koeppe, Robert A.; Frey, Kirk A.; Dauer, William T.; Albin, Roger L.; Müller, Martijn L.t.m. (2019). "Cholinergic system changes of falls and freezing of gait in Parkinson’s disease." Annals of Neurology 85(4): 538-549.
dc.identifier.issn0364-5134
dc.identifier.issn1531-8249
dc.identifier.urihttps://hdl.handle.net/2027.42/149240
dc.publisherJohn Wiley & Sons, Inc.
dc.titleCholinergic system changes of falls and freezing of gait in Parkinson’s disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149240/1/ana25430_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149240/2/ana25430.pdf
dc.identifier.doi10.1002/ana.25430
dc.identifier.sourceAnnals of Neurology
dc.identifier.citedreferenceEbersbach G, Trottenberg T, Hattig H, et al. Directional bias of initial visual exploration. A symptom of neglect in Parkinson‘s disease. Brain 1996; 119 ( pt 1 ): 79 – 87.
dc.identifier.citedreferenceSchmitz TW, Mur M, Aghourian M, Bedard MA, Spreng RN; Alzheimer‘s Disease Neuroimaging Initiative. Longitudinal Alzheimer‘s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Rep 2018; 24: 38 – 46.
dc.identifier.citedreferenceBallinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016; 91: 1199 – 1218.
dc.identifier.citedreferenceHeckers S, Geula C, Mesulam M. Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 1992; 325: 68 – 82.
dc.identifier.citedreferenceBohnen NI, Muller MLTM, Kotagal V, et al. Heterogeneity of cholinergic denervation in Parkinson‘s disease without dementia. J Cereb Blood Flow Metab 2012; 32: 1609 – 1617.
dc.identifier.citedreferenceHalassa MM, Kastner S. Thalamic functions in distributed cognitive control. Nat Neurosci 2017; 20: 1669 – 1679.
dc.identifier.citedreferenceVossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 2014; 20: 150 – 159.
dc.identifier.citedreferenceWright WG, Gurfinkel V, King L, Horak F. Parkinson‘s disease shows perceptuomotor asymmetry unrelated to motor symptoms. Neurosci Lett 2007; 417: 10 – 15.
dc.identifier.citedreferenceSarter M, Albin RL, Kucinski A, Lustig C. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp Neurol 2014; 257C: 120 – 129.
dc.identifier.citedreferenceSnijders AH, Leunissen I, Bakker M, et al. Gait‐related cerebral alterations in patients with Parkinson‘s disease with freezing of gait. Brain 2011; 134 ( pt 1 ): 59 – 72.
dc.identifier.citedreferenceSnijders AH, Takakusaki K, Debu B, et al. Physiology of freezing of gait. Ann Neurol 2016; 80: 644 – 659.
dc.identifier.citedreferenceBartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008; 23 ( suppl 2 ): S461 – S467.
dc.identifier.citedreferenceTessitore A, Amboni M, Esposito F, et al. Resting‐state brain connectivity in patients with Parkinson‘s disease and freezing of gait. Parkinsonism Relat Disord 2012; 18: 781 – 787.
dc.identifier.citedreferenceShine JM, Matar E, Ward PB, et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson‘s disease. Brain 2013; 136 ( pt 4 ): 1204 – 1215.
dc.identifier.citedreferenceFling BW, Cohen RG, Mancini M, et al. Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain 2013; 136 ( pt 8 ): 2405 – 2418.
dc.identifier.citedreferenceAlexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9: 357 – 381.
dc.identifier.citedreferenceBradfield LA, Bertran‐Gonzalez J, Chieng B, Balleine BW. The thalamostriatal pathway and cholinergic control of goal‐directed action: interlacing new with existing learning in the striatum. Neuron 2013; 79: 153 – 166.
dc.identifier.citedreferenceGilat M, Ehgoetz Martens KA, Miranda‐Dominguez O, et al. Dysfunctional limbic circuitry underlying freezing of gait in Parkinson‘s disease. Neuroscience 2018; 374: 119 – 132.
dc.identifier.citedreferenceMartens KA, Hall JM, Gilat M, et al. Anxiety is associated with freezing of gait and attentional set‐shifting in Parkinson‘s disease: a new perspective for early intervention. Gait Posture 2016; 49: 431 – 436.
dc.identifier.citedreferenceVidenovic A, Marlin C, Alibiglou L, et al. Increased REM sleep without atonia in Parkinson disease with freezing of gait. Neurology 2013; 81: 1030 – 1035.
dc.identifier.citedreferenceKotagal V, Albin RL, Muller ML, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol 2012; 71: 560 – 568.
dc.identifier.citedreferenceLord S, Galna B, Yarnall AJ, et al. Natural history of falls in an incident cohort of Parkinson‘s disease: early evolution, risk and protective features. J Neurol 2017; 264: 2268 – 2276.
dc.identifier.citedreferenceBloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson‘s disease: a review of two interconnected, episodic phenomena. Mov Disord 2004; 19: 871 – 884.
dc.identifier.citedreferenceHely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson‘s disease: non‐L‐dopa‐responsive problems dominate at 15 years. Mov Disord 2005; 20: 190 – 199.
dc.identifier.citedreferenceWilliams‐Gray CH, Mason SL, Evans JR, et al. The CamPaIGN study of Parkinson‘s disease: 10‐year outlook in an incident population‐based cohort. J Neurol Neurosurg Psychiatry 2013; 84: 1258 – 1264.
dc.identifier.citedreferencePerez‐Lloret S, Negre‐Pages L, Damier P, et al. Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol 2014; 71: 884 – 890.
dc.identifier.citedreferenceBohnen NI, Muller ML, Koeppe RA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 2009; 73: 1670 – 1676.
dc.identifier.citedreferenceBohnen NI, Frey KA, Studenski S, et al. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 2013; 81: 1611 – 1616.
dc.identifier.citedreferenceBohnen NI, Frey KA, Studenski S, et al. Extra‐nigral pathological conditions are common in Parkinson‘s disease with freezing of gait: an in vivo positron emission tomography study. Mov Disord 2014; 29: 1118 – 1124.
dc.identifier.citedreferenceKoeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl DE. Kinetic modeling of N‐[ 11 C]methylpiperidin‐4‐yl propionate: alternatives for analysis of an irreversible positron emission tomography tracer for measurement of acetylcholinesterase activity in human brain. J Cereb Blood Flow Metab 1999; 19: 1150 – 1163.
dc.identifier.citedreferenceMarcone A, Garibotto V, Moresco RM, et al. [11C]‐MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer‘s disease, and dementia with Lewy bodies: a Bayesian method and voxel‐based analysis. J Alzheimers Dis 2012; 31: 387 – 399.
dc.identifier.citedreferenceKilbourn MR, Hockley B, Lee L, et al. Positron emission tomography imaging of (2R,3R)‐5‐[(18)F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter. Nucl Med Biol 2009; 36: 489 – 493.
dc.identifier.citedreferencePetrou M, Frey KA, Kilbourn MR, et al. In vivo imaging of human cholinergic nerve terminals with (‐)‐5‐ 18 F‐fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 2014; 55: 396 – 404.
dc.identifier.citedreferenceHughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson‘s disease: a clinico‐pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181 – 184.
dc.identifier.citedreferenceNasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695 – 699.
dc.identifier.citedreferenceGoetz CG, Fahn S, Martinez‐Martin P, et al. Movement Disorder Society‐sponsored revision of the Unified Parkinson‘s Disease Rating Scale (MDS‐UPDRS): Process, format, and clinimetric testing plan. Mov Disord 2007; 22: 41 – 47.
dc.identifier.citedreferenceTomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson‘s disease. Mov Disord 2010; 25: 2649 – 2653.
dc.identifier.citedreferenceSnijders AH, Haaxma CA, Hagen YJ, Munneke M, Bloem BR. Freezer or non‐freezer: clinical assessment of freezing of gait. Parkinsonism Relat Disord 2012; 18: 149 – 154.
dc.identifier.citedreferenceShao X, Hoareau R, Runkle AC, et al. Highlighting the versatility of the Tracerlab synthesis modules. Part 2: fully automated production of [ 11 C]labelled radiopharmaceuticals using a Tracerlab FX C‐Pro. J Labelled Comp Radiopharm 2011; 54: 819 – 838.
dc.identifier.citedreferenceShao X, Hoareau R, Hockley BG, et al. Highlighting the versatility of the Tracerlab synthesis modules. Part 1: fully automated production of [ 18 F]labelled radiopharmaceuticals using a Tracerlab FX FN. J Labelled Comp Radiopharm. 2011; 54: 292 – 307.
dc.identifier.citedreferenceMinoshima S, Koeppe RA, Fessler JA, et al. Integrated and automated data analysis method for neuronal activation studying using O 15 water PET. In: Uemura K, Lassen NA, Jones T, Kanno I, eds. Quantification of Brain Function to Tracer Kinetics and Image Analysis in Brain PET. Tokyo: Excerpta Medica; 1993: 409 – 418.
dc.identifier.citedreferenceAghourian M, Legault‐Denis C, Soucy JP, et al. Quantification of brain cholinergic denervation in Alzheimer‘s disease using PET imaging with [ 18 F]‐FEOBV. Mol Psychiatry 2017; 22: 1531 – 1538.
dc.identifier.citedreferenceNejad‐Davarani S, Koeppe RA, Albin RL, et al. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [(18)F]‐FEOBV. Molecular psychiatry. 2018 Aug 6. https://doi.org/10.1038/s41380-018-0130-5. [Epub ahead of print]
dc.identifier.citedreferenceGilman S, Koeppe RA, Nan B, et al. Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology 2010; 74: 1416 – 1423.
dc.identifier.citedreferenceWorsley KJ, Marrett S, Neelin P, et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 1996; 4: 58 – 73.
dc.identifier.citedreferenceKarachi C, Grabli D, Bernard FA, et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 2010; 120: 2745 – 2754.
dc.identifier.citedreferenceMuller ML, Albin RL, Kotagal V, et al. Thalamic cholinergic innervation and postural sensory integration function in Parkinson‘s disease. Brain 2013; 136 ( pt 11 ): 3282 – 3289.
dc.identifier.citedreferenceAlbin RL, Bohnen NI, Muller M, et al. Regional vesicular acetylcholine transporter distribution in human brain: a [(18) F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 2018; 526: 2884 – 2897.
dc.identifier.citedreferenceParent M, Bedard MA, Aliaga A, et al. PET imaging of cholinergic deficits in rats using [18F]fluoroethoxybenzovesamicol ([18F]FEOBV). Neuroimage 2012; 62: 555 – 561.
dc.identifier.citedreferenceCyr M, Parent MJ, Mechawar N, et al. PET imaging with [(18)F]fluoroethoxybenzovesamicol ([(18)F]FEOBV) following selective lesion of cholinergic pedunculopontine tegmental neurons in rat. Nucl Med Biol 2014; 41: 96 – 101.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.