Show simple item record

Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching

dc.contributor.authorAhn, Bumsoo
dc.contributor.authorRanjit, Rojina
dc.contributor.authorPremkumar, Pavithra
dc.contributor.authorPharaoh, Gavin
dc.contributor.authorPiekarz, Katarzyna M.
dc.contributor.authorMatsuzaki, Satoshi
dc.contributor.authorClaflin, Dennis R.
dc.contributor.authorRiddle, Kaitlyn
dc.contributor.authorJudge, Jennifer
dc.contributor.authorBhaskaran, Shylesh
dc.contributor.authorSatara Natarajan, Kavithalakshmi
dc.contributor.authorBarboza, Erika
dc.contributor.authorWronowski, Benjamin
dc.contributor.authorKinter, Michael
dc.contributor.authorHumphries, Kenneth M.
dc.contributor.authorGriffin, Timothy M.
dc.contributor.authorFreeman, Willard M.
dc.contributor.authorRichardson, Arlan
dc.contributor.authorBrooks, Susan V.
dc.contributor.authorVan Remmen, Holly
dc.date.accessioned2019-05-31T18:26:27Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationAhn, Bumsoo; Ranjit, Rojina; Premkumar, Pavithra; Pharaoh, Gavin; Piekarz, Katarzyna M.; Matsuzaki, Satoshi; Claflin, Dennis R.; Riddle, Kaitlyn; Judge, Jennifer; Bhaskaran, Shylesh; Satara Natarajan, Kavithalakshmi; Barboza, Erika; Wronowski, Benjamin; Kinter, Michael; Humphries, Kenneth M.; Griffin, Timothy M.; Freeman, Willard M.; Richardson, Arlan; Brooks, Susan V.; Van Remmen, Holly (2019). "Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching." Journal of Cachexia, Sarcopenia and Muscle 10(2): 411-428.
dc.identifier.issn2190-5991
dc.identifier.issn2190-6009
dc.identifier.urihttps://hdl.handle.net/2027.42/149270
dc.description.abstractBackgroundExcess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated.MethodsWe generated mice lacking skeletal muscle‐specific manganese‐superoxide dismutase (mSod2KO) to increase mtROS using a cre‐Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction.ResultsThe mSod2KO mice, contrary to our prediction, exhibit a 10–15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve‐stimulated isometric maximum‐specific force (N/cm2), force per cross‐sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex‐II‐mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05).ConclusionsIncreased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHyperplasia
dc.subject.otherSkeletal muscle
dc.subject.otherFibre branching
dc.subject.otherMitochondria
dc.subject.otherMnSOD
dc.subject.otherReactive oxygen species
dc.titleMitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149270/1/jcsm12375_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149270/2/jcsm12375.pdf
dc.identifier.doi10.1002/jcsm.12375
dc.identifier.sourceJournal of Cachexia, Sarcopenia and Muscle
dc.identifier.citedreferenceSakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age‐related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017; 8: 881 – 906.
dc.identifier.citedreferenceKrumschnabel G, Fontana‐Ayoub M, Sumbalova Z, Heidler J, Gauper K, Fasching M, et al. Simultaneous high‐resolution measurement of mitochondrial respiration and hydrogen peroxide production. Methods Mol Biol 2015; 1264: 245 – 261.
dc.identifier.citedreferenceMatsuzaki S, Kotake Y, Humphries KM. Identification of mitochondrial electron transport chain‐mediated NADH radical formation by EPR spin‐trapping techniques. Biochemistry 2011; 50: 10792 – 10803.
dc.identifier.citedreferenceRoberts LJ, Morrow JD. Measurement of F(2)‐isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 2000; 28: 505 – 513.
dc.identifier.citedreferenceMcLain AL, Cormier PJ, Kinter M, Szweda LI. Glutathionylation of α‐ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification. Free Radic Biol Med 2013; 61: 161 – 169.
dc.identifier.citedreferenceAvner BS, Hinken AC, Yuan C, Solaro RJ. H2O2 alters rat cardiac sarcomere function and protein phosphorylation through redox signaling. Am J Physiol Heart Circ Physiol 2010; 299: H723 – H730.
dc.identifier.citedreferenceChaudhuri AR, de Waal EM, Pierce A, Van Remmen H, Ward WF, Richardson A. Detection of protein carbonyls in aging liver tissue: a fluorescence‐based proteomic approach. Mech Ageing Dev 2006; 127: 849 – 861.
dc.identifier.citedreferenceLane RS, Fu Y, Matsuzaki S, Kinter M, Humphries KM, Griffin TM. Mitochondrial respiration and redox coupling in articular chondrocytes. Arthritis Res Ther 2015; 17: 54.
dc.identifier.citedreferenceClaflin DR, Brooks SV. Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy. Am J Physiol Cell Physiol 2008; 294: C651 – C658.
dc.identifier.citedreferenceQaisar R, Bhaskaran S, Premkumar P, Ranjit R, Natarajan KS, Ahn B, et al. Oxidative stress‐induced dysregulation of excitation‐contraction coupling contributes to muscle weakness: oxidative stress causes muscle defect via calcium imbalance. J Cachexia Sarcopenia Muscle 2018; https://doi.org/10.1002/jcsm.12339.
dc.identifier.citedreferenceFu MH, Tupling AR. Protective effects of Hsp70 on the structure and function of SERCA2a expressed in HEK‐293 cells during heat stress. Am J Physiol Heart Circ Physiol 2009; 296: H1175 – H1183.
dc.identifier.citedreferenceFalk DJ, Todd AG, Lee S, Soustek MS, ElMallah MK, Fuller DD, et al. Peripheral nerve and neuromuscular junction pathology in Pompe disease. Hum Mol Genet 2015; 24: 625 – 636.
dc.identifier.citedreferenceFaber RM, Hall JK, Chamberlain JS, Banks GB. Myofiber branching rather than myofiber hyperplasia contributes to muscle hypertrophy in mdx mice. Skelet Muscle 2014; 4: 10.
dc.identifier.citedreferenceRoberts BM, Ahn B, Smuder AJ, Al‐Rajhi M, Gill LC, Beharry AW, et al. Diaphragm and ventilatory dysfunction during cancer cachexia. FASEB J 2013; 27: 2600 – 2610.
dc.identifier.citedreferenceAhn B, Pharaoh G, Premkumar P, Huseman K, Ranjit R, Kinter M, et al. Nrf2 deficiency exacerbates age‐related contractile dysfunction and loss of skeletal muscle mass. Redox Biol 2018; 17: 47 – 58.
dc.identifier.citedreferenceMasser DR, Clark NW, Van Remmen H, Freeman WM. Loss of the antioxidant enzyme CuZnSOD (Sod1) mimics an age‐related increase in absolute mitochondrial DNA copy number in the skeletal muscle. Age (Dordr) 2016; 38: 323 – 333.
dc.identifier.citedreferenceMasser DR, Otalora L, Clark NW, Kinter MT, Elliott MH, Freeman WM. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy. J Neurochem 2017; 143: 595 – 608.
dc.identifier.citedreferenceWilliams MD, Van Remmen H, Conrad CC, Huang TT, Epstein CJ, Richardson A. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem 1998; 273: 28510 – 28515.
dc.identifier.citedreferencePicard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, et al. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 2010; 9: 1032 – 1046.
dc.identifier.citedreferenceWebster RP, Roberts VHJ, Myatt L. Protein nitration in placenta—functional significance. Placenta 2008; 29: 985 – 994.
dc.identifier.citedreferenceMcLain AL, Szweda PA, Szweda LI. α‐Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 2011; 45: 29 – 36.
dc.identifier.citedreferenceGordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev 2000; 80: 853 – 924.
dc.identifier.citedreferenceMorrow RM, Picard M, Derbeneva O, Leipzig J, McManus MJ, Gouspillou G, et al. Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci U S A 2017; 114: 2705 – 2710.
dc.identifier.citedreferenceLin J, Wu H, Tarr PT, Zhang C‐Y, Wu Z, Boss O, et al. Transcriptional co‐activator PGC‐1α drives the formation of slow‐twitch muscle fibres. Nature 2002; 418: 797 – 801.
dc.identifier.citedreferenceWeiss ES, Wang KKW, Allen JG, Blue ME, Nwakanma LU, Liu MC, et al. Alpha II‐spectrin breakdown products serve as novel markers of brain injury severity in a canine model of hypothermic circulatory arrest. Ann Thorac Surg 2009; 88: 543 – 550.
dc.identifier.citedreferenceHaller RG, Henriksson KG, Jorfeldt L, Hultman E, Wibom R, Sahlin K, et al. Deficiency of skeletal muscle succinate dehydrogenase and aconitase. Pathophysiology of exercise in a novel human muscle oxidative defect. J Clin Invest 1991; 88: 1197 – 1206.
dc.identifier.citedreferenceLarsson LE, Linderholm H, Mueller R, Ringqvist T, Soernaes R. Hereditary metabolic myopathy with paroxysmal myoglobinuria due to abnormal glycolysis. J Neurol Neurosurg Psychiatry 1964; 27: 361 – 380.
dc.identifier.citedreferenceQuirós PM, Langer T, López‐Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 2015; 16: 345 – 359.
dc.identifier.citedreferenceNojiri H, Shimizu T, Funakoshi M, Yamaguchi O, Zhou H, Kawakami S, et al. Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem 2006; 281: 33789 – 33801.
dc.identifier.citedreferenceTsuda M, Fukushima A, Matsumoto J, Takada S, Kakutani N, Nambu H, et al. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure. J Cachexia Sarcopenia Muscle 2018; https://doi.org/10.1002/jcsm.12322.
dc.identifier.citedreferencePowers SK, Jackson MJ. Exercise‐induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88: 1243 – 1276.
dc.identifier.citedreferenceGonzalez‐Freire M, Adelnia F, Moaddel R, Ferrucci L. Searching for a mitochondrial root to the decline in muscle function with ageing. J Cachexia Sarcopenia Muscle 2018; 9: 435 – 440.
dc.identifier.citedreferenceGiniatullin AR, Giniatullin RA. Dual action of hydrogen peroxide on synaptic transmission at the frog neuromuscular junction. J Physiol (Lond) 2003; 552: 283 – 293.
dc.identifier.citedreferenceKornegay JN, Childers MK, Bogan DJ, Bogan JR, Nghiem P, Wang J, et al. The paradox of muscle hypertrophy in muscular dystrophy. Phys Med Rehabil Clin N Am 2012; 23: 149 – xii.
dc.identifier.citedreferenceWebster C, Silberstein L, Hays AP, Blau HM. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 1988; 52: 503 – 513.
dc.identifier.citedreferenceKarpati G, Carpenter S, Prescott S. Small‐caliber skeletal muscle fibers do not suffer necrosis in mdx mouse dystrophy. Muscle Nerve 1988; 11: 795 – 803.
dc.identifier.citedreferenceMackey AL, Kjaer M. The breaking and making of healthy adult human skeletal muscle in vivo. Skelet Muscle 2017; 7: 24.
dc.identifier.citedreferenceBlaivas M, Carlson BM. Muscle fiber branching—difference between grafts in old and young rats. Mech Ageing Dev 1991; 60: 43 – 53.
dc.identifier.citedreferenceLovering RM, Michaelson L, Ward CW. Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress‐induced Ca2+ signaling. Am J Physiol Cell Physiol 2009; 297: C571 – C580.
dc.identifier.citedreferenceLynch GS, Hinkle RT, Chamberlain JS, Brooks SV, Faulkner JA. Force and power output of fast and slow skeletal muscles from mdx mice 6‐28 months old. J Physiol (Lond) 2001; 535: 591 – 600.
dc.identifier.citedreferencevon Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the journal of cachexia, sarcopenia and muscle: update 2017. J Cachexia Sarcopenia Muscle 2017; 8: 1081 – 1083.
dc.identifier.citedreferenceMuller FL, Song W, Liu Y, Chaudhuri A, Pieke‐Dahl S, Strong R, et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age‐dependent skeletal muscle atrophy. Free Radic Biol Med 2006; 40: 1993 – 2004.
dc.identifier.citedreferenceJang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, Liang H, et al. Increased superoxide in vivo accelerates age‐associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 2010; 24: 1376 – 1390.
dc.identifier.citedreferenceBoengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8: 349 – 369.
dc.identifier.citedreferenceMuller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, et al. Denervation‐induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1159 – R1168.
dc.identifier.citedreferenceCsukly K, Ascah A, Matas J, Gardiner PF, Fontaine E, Burelle Y. Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. J Physiol (Lond) 2006; 574: 319 – 327.
dc.identifier.citedreferenceBrown JL, Rosa‐Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA, et al. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour‐bearing mice. J Cachexia Sarcopenia Muscle 2017; 8: 926 – 938.
dc.identifier.citedreferencePlant DR, Gregorevic P, Williams DA, Lynch GS. Redox modulation of maximum force production of fast‐and slow‐twitch skeletal muscles of rats and mice. J Appl Physiol 2001; 90: 832 – 838.
dc.identifier.citedreferenceMcClung JM, Judge AR, Talbert EE, Powers SK. Calpain‐1 is required for hydrogen peroxide‐induced myotube atrophy. Am J Physiol Cell Physiol 2009; 296: C363 – C371.
dc.identifier.citedreferenceLarkin LM, Davis CS, Sims‐Robinson C, Kostrominova TY, Van Remmen H, Richardson A, et al. Skeletal muscle weakness due to deficiency of CuZn‐superoxide dismutase is associated with loss of functional innervation. Am J Physiol Regul Integr Comp Physiol 2011; 301: R1400 – R1407.
dc.identifier.citedreferenceShi Y, Ivannikov MV, Walsh ME, Liu Y, Zhang Y, Jaramillo CA, et al. The lack of CuZnSOD leads to impaired neurotransmitter release, neuromuscular junction destabilization and reduced muscle strength in mice. PLoS ONE 2014; 9: e100834.
dc.identifier.citedreferenceJang YC, Liu Y, Hayworth CR, Bhattacharya A, Lustgarten MS, Muller FL, et al. Dietary restriction attenuates age‐associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell 2012; 11: 770 – 782.
dc.identifier.citedreferenceSakellariou GK, Davis CS, Shi Y, Ivannikov MV, Zhang Y, Vasilaki A, et al. Neuron‐specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD‐knockout mice. FASEB J 2014; 28: 1666 – 1681.
dc.identifier.citedreferenceZhang Y, Davis C, Sakellariou GK, Shi Y, Kayani AC, Pulliam D, et al. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. FASEB J 2013; 27: 3536 – 3548.
dc.identifier.citedreferenceVasilaki A, Richardson A, Van Remmen H, Brooks SV, Larkin L, McArdle A, et al. Role of nerve‐muscle interactions and reactive oxygen species in regulation of muscle proteostasis with ageing. J Physiol (Lond) 2017; 595: 6409 – 6415.
dc.identifier.citedreferenceLebovitz RM, Zhang H, Vogel H, Cartwright J, Dionne L, Lu N, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase‐deficient mice. Proc Natl Acad Sci U S A 1996; 93: 9782 – 9787.
dc.identifier.citedreferenceLi Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995; 11: 376 – 381.
dc.identifier.citedreferenceVan Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, et al. Life‐long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 2003; 16: 29 – 37.
dc.identifier.citedreferenceMansouri A, Muller FL, Liu Y, Ng R, Faulkner J, Hamilton M, et al. Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind‐limb skeletal muscle during aging. Mech Ageing Dev 2006; 127: 298 – 306.
dc.identifier.citedreferenceLustgarten MS, Jang YC, Liu Y, Muller FL, Qi W, Steinhelper M, et al. Conditional knockout of Mn‐SOD targeted to type IIB skeletal muscle fibers increases oxidative stress and is sufficient to alter aerobic exercise capacity. Am J Physiol Cell Physiol 2009; 297: C1520 – C1532.
dc.identifier.citedreferenceLustgarten MS, Jang YC, Liu Y, Qi W, Qin Y, Dahia PL, et al. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging. Aging Cell 2011; 10: 493 – 505.
dc.identifier.citedreferenceKuwahara H, Horie T, Ishikawa S, Tsuda C, Kawakami S, Noda Y, et al. Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. Free Radic Biol Med 2010; 48: 1252 – 1262.
dc.identifier.citedreferenceIkegami T, Suzuki Y, Shimizu T, Isono K, Koseki H, Shirasawa T. Model mice for tissue‐specific deletion of the manganese superoxide dismutase (MnSOD) gene. Biochem Biophys Res Commun 2002; 296: 729 – 736.
dc.identifier.citedreferenceMuller FL, Liu Y, Abdul‐Ghani MA, Lustgarten MS, Bhattacharya A, Jang YC, et al. High rates of superoxide production in skeletal‐muscle mitochondria respiring on both complex I‐ and complex II‐linked substrates. Biochem J 2008; 409: 491 – 499.
dc.identifier.citedreferencePicard M, Csukly K, Robillard M‐E, Godin R, Ascah A, Bourcier‐Lucas C, et al. Resistance to Ca2+‐induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles. Am J Physiol Regul Integr Comp Physiol 2008; 295: R659 – R668.
dc.identifier.citedreferenceKuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 2008; 3: 965 – 976.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.