Show simple item record

Personalized scaffolding technologies for alveolar bone regenerative medicine

dc.contributor.authorYu, Ning
dc.contributor.authorNguyen, Trang
dc.contributor.authorCho, Young D.
dc.contributor.authorKavanagh, Nolan M.
dc.contributor.authorGhassib, Iya
dc.contributor.authorGiannobile, William V.
dc.date.accessioned2019-05-31T18:26:28Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationYu, Ning; Nguyen, Trang; Cho, Young D.; Kavanagh, Nolan M.; Ghassib, Iya; Giannobile, William V. (2019). "Personalized scaffolding technologies for alveolar bone regenerative medicine." Orthodontics & Craniofacial Research : 69-75.
dc.identifier.issn1601-6335
dc.identifier.issn1601-6343
dc.identifier.urihttps://hdl.handle.net/2027.42/149271
dc.publisherWiley Periodicals, Inc.
dc.subject.other3D printing
dc.subject.otherperiodontal regeneration
dc.subject.otherscaffolds
dc.subject.othertissue engineering
dc.subject.otherimaging
dc.titlePersonalized scaffolding technologies for alveolar bone regenerative medicine
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149271/1/ocr12275.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149271/2/ocr12275_am.pdf
dc.identifier.doi10.1111/ocr.12275
dc.identifier.sourceOrthodontics & Craniofacial Research
dc.identifier.citedreferenceKarch R, Neumann F, Neumann M, Schreiner W. A three‐dimensional model for arterial tree representation, generated by constrained constructive optimization. Comput Biol Med. 1999; 29 ( 1 ): 19 ‐ 38.
dc.identifier.citedreferencePilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, et al. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater. 2016; 5 ( 6 ): 676 ‐ 687.
dc.identifier.citedreferencePilipchuk SP, Fretwurst T, Yu N, et al. Micropatterned scaffolds with immobilized growth factor genes regenerate bone and periodontal ligament‐like tissues. Adv Healthc Mater. 2018; 7: e1800750.
dc.identifier.citedreferenceAhn HS, Hwang JY, Kim MS, Lee JY, Kim JW, Kim HS, et al. Carbon‐nanotube‐interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta Biomater. 2015; 13: 324 ‐ 334.
dc.identifier.citedreferenceLi X, Liu H, Niu X, Yu B, Fan Y, Feng Q, et al. The use of carbon nanotubes to induce osteogenic differentiation of human adipose‐derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials. 2012; 33 ( 19 ): 4818 ‐ 4827.
dc.identifier.citedreferenceChia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015; 9: 4.
dc.identifier.citedreferenceHollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005; 4 ( 7 ): 518 ‐ 524.
dc.identifier.citedreferencePark SH, Kang BK, Lee JE, Chun SW, Jang K, Kim YH, et al. Design and fabrication of a thin‐walled free‐form scaffold on the basis of medical image data and a 3d printed template: its potential use in bile duct regeneration. ACS Appl Mater Interfaces. 2017; 9 ( 14 ): 12290 ‐ 12298.
dc.identifier.citedreferenceZopf DA, Mitsak AG, Flanagan CL, Wheeler M, Green GE, Hollister SJ. Computer aided‐designed, 3‐dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg. 2015; 152 ( 1 ): 57 ‐ 62.
dc.identifier.citedreferenceHutmacher DW. Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci Polym Ed. 2001; 12 ( 1 ): 107 ‐ 124.
dc.identifier.citedreferenceHollister SJ, Kikuchi N. Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue. Biotechnol Bioeng. 1994; 43 ( 7 ): 586 ‐ 596.
dc.identifier.citedreferenceJheon AH, Oberoi S, Solem RC, Kapila S. Moving towards precision orthodontics: an evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthod Craniofac Res. 2017; 20 ( Suppl. 1 ): 106 ‐ 113.
dc.identifier.citedreferenceLee JW, Kim JY, Cho DW. Solid free‐form fabrication technology and its application to bone tissue engineering. Int J Stem Cells. 2010; 3 ( 2 ): 85 ‐ 95.
dc.identifier.citedreferenceVan Dyke TE, Hasturk H, Kantarci A, Freire MO, Nguyen D, Dalli J, et al. Proresolving nanomedicines activate bone regeneration in periodontitis. J Dent Res. 2015; 94 ( 1 ): 148 ‐ 156.
dc.identifier.citedreferenceMironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer‐aided jet‐based 3D tissue engineering. Trends Biotechnol. 2003; 21 ( 4 ): 157 ‐ 161.
dc.identifier.citedreferenceHao J, Cheng KC, Kruger LG, Larsson L, Sugai JV, Lahann J, et al. Multigrowth factor delivery via immobilization of gene therapy vectors. Adv Mater. 2016; 28 ( 16 ): 3145 ‐ 3151.
dc.identifier.citedreferenceRasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, et al. 3D‐printed bioresorbable scaffold for periodontal repair. J Dent Res. 2015; 94 ( 9 Suppl. ): 153s ‐ 157s.
dc.identifier.citedreferenceWei G, Ma PX. Partially nanofibrous architecture of 3D tissue engineering scaffolds. Biomaterials. 2009; 30 ( 32 ): 6426 ‐ 6434.
dc.identifier.citedreferenceBottino MC, Pankajakshan D, Nor JE. Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin N Am. 2017; 61 ( 4 ): 689 ‐ 711.
dc.identifier.citedreferenceJanakiraman N, Feinberg M, Vishwanath M, Nalaka Jayaratne YS, Steinbacher DM, Nanda R, et al. Integration of 3‐dimensional surgical and orthodontic technologies with orthognathic “surgery‐first” approach in the management of unilateral condylar hyperplasia. Am J Orthod Dentofac Orthop. 2015; 148 ( 6 ): 1054 ‐ 1066.
dc.identifier.citedreferenceEdwards SP. Computer‐assisted craniomaxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2010; 22 ( 1 ): 117 ‐ 134.
dc.identifier.citedreferenceDraenert FG, Gebhart F, Mitov G, Neff A. Biomaterial shell bending with 3D‐printed templates in vertical and alveolar ridge augmentation: a technical note. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017; 123 ( 6 ): 651 ‐ 660.
dc.identifier.citedreferenceAl‐Ardah A, Alqahtani N, AlHelal A, Goodacre B, Swamidass R, Garbacea A, et al. Using virtual ridge augmentation and 3D printing to fabricate a titanium mesh positioning device: a novel technique letter. J Oral Implantol. 2018; 44: 293 ‐ 299.
dc.identifier.citedreferenceMangano F, Zecca P, Pozzi‐Taubert S, Macchi A, Ricci M, Luongo G, et al. Maxillary sinus augmentation using computer‐aided design/computer‐aided manufacturing (CAD/CAM) technology. Int J Med Robot. 2013; 9 ( 3 ): 331 ‐ 338.
dc.identifier.citedreferenceGiannobile WV, Chai Y, Chen Y, Healy KE, Klein O, Lane N, et al. Dental, oral, and craniofacial regenerative medicine: transforming biotechnologies for innovating patient care. J Dent Res. 2018; 97 ( 4 ): 361 ‐ 363.
dc.identifier.citedreferenceLin Z. The function and regulation of LIM domain mineralization protein (LMP) in periodontal ligament progenitor cells. PhD, University of Michigan, Ann Arbor, MI; 2010.
dc.identifier.citedreferenceLarsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV. Regenerative medicine for periodontal and peri‐implant diseases. J Dent Res. 2016; 95 ( 3 ): 255 ‐ 266.
dc.identifier.citedreferenceSeo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004; 364 ( 9429 ): 149 ‐ 155.
dc.identifier.citedreferenceYu N, Oortgiesen DA, Bronckers AL, Yang F, Walboomers XF, Jansen JA. Enhanced periodontal tissue regeneration by periodontal cell implantation. J Clin Periodontol. 2013; 40 ( 7 ): 698 ‐ 706.
dc.identifier.citedreferenceFeng F, Akiyama K, Liu Y, Yamaza T, Wang TM, Chen JH, et al. Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis. 2010; 16 ( 1 ): 20 ‐ 28.
dc.identifier.citedreferenceKaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E, et al. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant. 2013; 22 ( 5 ): 767 ‐ 777.
dc.identifier.citedreferenceHollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res. 2005; 8 ( 3 ): 162 ‐ 173.
dc.identifier.citedreferenceObregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three‐dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res. 2015; 94 ( 9 Suppl. ): 143S ‐ 152S.
dc.identifier.citedreferenceLarsson L, Pilipchuk SP, Giannobile WV, Castilho RM. When epigenetics meets bioengineering – a material characteristics and surface topography perspective. J Biomed Mater Res B Appl Biomater. 2018; 106 ( 5 ): 2065 ‐ 2071.
dc.identifier.citedreferencePark CH, Rios HF, Taut AD, Padial‐Molina M, Flanagan CL, Pilipchuk SP, et al. Image‐based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods. 2014; 20 ( 7 ): 533 ‐ 542.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.