Show simple item record

Jensen‐Shannon Complexity and Permutation Entropy Analysis of Geomagnetic Auroral Currents

dc.contributor.authorOsmane, Adnane
dc.contributor.authorDimmock, Andrew P.
dc.contributor.authorPulkkinen, Tuija I.
dc.date.accessioned2019-05-31T18:26:32Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationOsmane, Adnane; Dimmock, Andrew P.; Pulkkinen, Tuija I. (2019). "Jensen‐Shannon Complexity and Permutation Entropy Analysis of Geomagnetic Auroral Currents." Journal of Geophysical Research: Space Physics 124(4): 2541-2551.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/149273
dc.description.abstractIn this study we determine whether auroral westward currents can be characterized by low‐dimensional chaotic attractors through the use of the complexity‐entropy methodology developed by Rosso et al. (2007, https://doi.org/10.1103/PhysRevLett.99.154102) and based on the permutation entropy developed by Bandt and Pompe (2002, https://doi.org/10.1103/PhysRevLett.88.174102). Our results indicate that geomagnetic auroral indices are indistinguishable from stochastic processes from time scales ranging from a few minutes to 10 hr and for embedded dimensions d < 8. Our results are inconsistent with earlier studies of Baker et al. (1990, https://doi.org/10.1029/GL017i001p00041), Pavlos et al. (1992), D. Roberts et al. (1991, https://doi.org/10.1029/91GL00021), D. A. Roberts (1991, https://doi.org/10.1029/91JA01088), and Vassiliadis et al. (1990, https://doi.org/10.1029/GL017i011p01841, 1991, https://doi.org/10.1029/91GL01378) indicating that auroral geomagnetic indices could be reduced to low‐dimensional systems with chaotic dynamics.Key PointsJensen‐Shannon complexity plane is used for first time to analyze auroral geomagnetic indicesAuroral indices are shown to be inconsistent with low‐dimensional chaotic processesMaximum in complexity occurs on time scales ranging between 10 and 40 min
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.titleJensen‐Shannon Complexity and Permutation Entropy Analysis of Geomagnetic Auroral Currents
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149273/1/jgra54860.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149273/2/jgra54860_am.pdf
dc.identifier.doi10.1029/2018JA026248
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceShan, L.‐H., Hansen, P., Goertz, C., & Smith, R. ( 1991 ). Chaotic appearance of the AE index. Geophysical Research Letters, 18 ( 2 ), 147 – 150.
dc.identifier.citedreferenceRoberts, D., Baker, D., Klimas, A., & Bargatze, L. ( 1991 ). Indications of low dimensionality in magnetospheric dynamics. Geophysical Research Letters, 18 ( 2 ), 151 – 154.
dc.identifier.citedreferenceRosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., & Fuentes, M. A. ( 2007 ). Distinguishing noise from chaos. Physical Review Letters, 99 ( 15 ), 154102.
dc.identifier.citedreferenceRosso, O. A., Olivares, F., Zunino, L., De Micco, L., Aquino, A. L. L., Plastino, A., & Larrondo, H. A. ( 2013 ). Characterization of chaotic maps using the permutation Bandt‐Pompe probability distribution. European Physical Journal B, 86, 116.
dc.identifier.citedreferenceRuelle, D., & Takens, F. ( 1971 ). On the nature of turbulence. Communications in Mathematical Physics, 20 ( 3 ), 167 – 192.
dc.identifier.citedreferenceSharma, A. S., Aschwanden, M. J., Crosby, N. B., Klimas, A. J., Milovanov, A. V., Morales, L., Sanchez, R., & Uritsky, V. ( 2016 ). 25 years of self‐organized criticality: Space and laboratory plasmas. Space Science Reviews, 198, 167 – 216.
dc.identifier.citedreferenceTakalo, J., Timonen, J., & Koskinen, H. ( 1994 ). Properties of AE data and bicolored noise. Journal of Geophysics Research, 99 ( A7 ), 13,239 – 13,249.
dc.identifier.citedreferenceTanskanen, E., Pulkkinen, T., Koskinen, H., & Slavin, J. ( 2002 ). Substorm energy budget during low and high solar activity: 1997 and 1999 compared. Journal of Geophysical Research, 107 ( A6 ), 1086.
dc.identifier.citedreferenceUritsky, V. M., Klimas, A. J., & Vassiliadis, D. ( 2006 ). Analysis and prediction of high‐latitude geomagnetic disturbances based on a self‐organized criticality framework. Advances in Space Research, 37 ( 3 ), 539 – 546.
dc.identifier.citedreferenceUritsky, V. M., & Pudovkin, M. I. ( 1998 ). Low frequency 1/f‐like fluctuations of the AE‐index as a possible manifestation of self‐organized criticality in the magnetosphere. Annales Geophysicae, 16, 1580 – 1588.
dc.identifier.citedreferenceUritsky, V., Pudovkin, M., & Steen, A. ( 2001 ). Geomagnetic substorms as perturbed self‐organized critical dynamics of the magnetosphere. Journal of Atmospheric and Solar‐Terrestrial Physics, 63 ( 13 ), 1415 – 1424.
dc.identifier.citedreferenceValdivia, J., Klimas, A., Vassiliadis, D., Uritsky, V., & Takalo, J. ( 2003 ). Self‐organization in a current sheet model, Advances in space environment research (pp. 515 – 522 ): Springer.
dc.identifier.citedreferenceVassiliadis, D. V., Sharma, A. S., Eastman, T. E., & Papadopoulos, K. ( 1990 ). Low‐dimensional chaos in magnetospheric activity from AE time series. Geophysical Research Letters, 17, 1841 – 1844.
dc.identifier.citedreferenceVassiliadis, D., Sharma, A., & Papadopoulos, K. ( 1991 ). Lyapunov exponent of magnetospheric activity from AL time series. Geophysical Research Letters, 18 ( 8 ), 1643 – 1646.
dc.identifier.citedreferenceWanliss, J. A., Anh, V. V., Yu, Z.‐G., & Watson, S. ( 2005 ). Multifractal modeling of magnetic storms via symbolic dynamics analysis. Journal of Geophysical Research, 110, A08214. https://doi.org/10.1029/2004JA010996
dc.identifier.citedreferenceWanliss, J. A., & Dobias, P. ( 2007 ). Space storm as a phase transition. Journal of Atmospheric and Solar‐Terrestrial Physics, 69, 675 – 684.
dc.identifier.citedreferenceWeck, P. J., Schaffner, D. A., Brown, M. R., & Wicks, R. T. ( 2015 ). Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind. Physical Review E, 91 ( 2 ), 23101. https://doi.org/10.1103/PhysRevE.91.023101
dc.identifier.citedreferenceZanin, M., Zunino, L., Rosso, O. A., & Papo, D. ( 2012 ). Permutation entropy and its main biomedical and econophysics applications: A review. Entropy, 14, 1553 – 1577.
dc.identifier.citedreferenceAxford, W. I., & Hines, C. O. ( 1961 ). A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433.
dc.identifier.citedreferenceBaker, D., Klimas, A., McPherron, R., & Büchner, J. ( 1990 ). The evolution from weak to strong geomagnetic activity: An interpretation in terms of deterministic chaos. Geophysical Research Letters, 17 ( 1 ), 41 – 44.
dc.identifier.citedreferenceBalasis, G., Daglis, I. A., Kapiris, P., Mandea, M., Vassiliadis, D., & Eftaxias, K. ( 2006 ). From pre‐storm activity to magnetic storms: A transition described in terms of fractal dynamics. Annales Geophysicae, 24, 3557 – 3567.
dc.identifier.citedreferenceBandt, C., & Pompe, B. ( 2002 ). Permutation entropy: A natural complexity measure for time series. Physical Review Letters, 88 ( 17 ), 174102.
dc.identifier.citedreferenceBerthelier, A., & Menvielle, M. ( 1993 ). Geomagnetic data 1987, IAGA indices: Aa, am, Kp, Dst, Ae, rapid variations. IAGA Bulletin, 32.
dc.identifier.citedreferenceChang, T. ( 1992 ). Low‐dimensional behavior and symmetry breaking of stochastic systems near criticality‐can these effects be observed in space and in the laboratory? IEEE Transactions on Plasma Science, 20 ( 6 ), 691 – 694.
dc.identifier.citedreferenceChaston, C., Wilber, M., Mozer, F., Fujimoto, M., Goldstein, M., Acuna, M., Reme, H., & Fazakerley, A. ( 2007 ). Mode conversion and anomalous transport in Kelvin‐Helmholtz vortices and kinetic alfvén waves at the Earth’s magnetopause. Physical Review Letters, 99 ( 17 ), 175004.
dc.identifier.citedreferenceConsolini, G., De Marco, R., & De Michelis, P. ( 2013 ). Intermittency and multifractional brownian character of geomagnetic time series. Nonlinear Processes in Geophysics, 20 ( 4 ), 455 – 466.
dc.identifier.citedreferenceConsolini, G., & De Michelis, P. ( 2014 ). Permutation entropy analysis of complex magnetospheric dynamics. Journal of Atmospheric and Solar‐Terrestrial Physics, 115, 25 – 31.
dc.identifier.citedreferenceConsolini, G., & Marcucci, M. ( 1997 ). Multifractal structure and intermittence in the AE index time series. Nuovo cimento della Società italiana di fisica. C, 20 ( 6 ), 939 – 949.
dc.identifier.citedreferenceDobias, P., & Wanliss, J. A. ( 2009 ). Intermittency of storms and substorms: Is it related to the critical behaviour? Annales Geophysicae, 27, 2011 – 2018.
dc.identifier.citedreferenceFarris, M. H., & Russell, C. T. ( 1994 ). Determining the standoff distance of the bow shock: Mach number dependence and use of models. Journal of Geophysical Research, 99, 17681.
dc.identifier.citedreferenceFreeman, J., Warren, C., & Maguire, J. ( 1968 ). Plasma flow directions at the magnetopause on January 13 and 14, 1967. Journal of Geophysical Research, 73 ( 17 ), 5719 – 5731.
dc.identifier.citedreferenceGollub, J. P., & Swinney, H. L. ( 1975 ). Onset of turbulence in a rotating fluid. Physical Review Letters, 35 ( 14 ), 927.
dc.identifier.citedreferenceGrassberger, P., & Procaccia, I. ( 1983 ). Characterization of strange attractors. Physical Review Letters, 50 ( 5 ), 346.
dc.identifier.citedreferenceHasegawa, H., Fujimoto, M., Phan, T.‐D., Reme, H., Balogh, A., Dunlop, M., Hashimoto, C., & TanDokoro, R. ( 2004 ). Transport of solar wind into Earth’s magnetosphere through rolled‐up kelvin–helmholtz vortices. Nature, 430 ( 7001 ), 755 – 758.
dc.identifier.citedreferenceHasegawa, H., Fujimoto, M., Takagi, K., Saito, Y., Mukai, T., & Rème, H ( 2006 ). Single‐spacecraft detection of rolled‐up Kelvin‐Helmholtz vortices at the flank magnetopause. Journal of Geophysical Research, 111, A09203. https://doi.org/10.1029/2006JA011728
dc.identifier.citedreferenceJohnson, J. R., & Cheng, C. Z. ( 1997 ). Kinetic Alfvén waves and plasma transport at the magnetopause. Geophysical Research Letters, 24, 1423 – 1426.
dc.identifier.citedreferenceJohnson, J. R., & Cheng, C. Z. ( 2001 ). Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophysical Research Letters, 28, 4421 – 4424.
dc.identifier.citedreferenceKing, J. H., & Papitashvili, N. E. ( 2005 ). Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. Journal of Geophysical Research, 110, A02104. https://doi.org/10.1029/2004JA010649
dc.identifier.citedreferenceKlimas, A. J., Valdivia, J. A., Vassiliadis, D., Baker, D. N., Hesse, M., & Takalo, J. ( 2000 ). Self‐organised criticality in the substorm phenomenon and its relation to localised reconnection in the magnetospheric plasma sheet. Journal of Geophysical Research, 105, 18,765 – 18,780.
dc.identifier.citedreferenceKlimas, A. J., Vassiliadis, D., Baker, D. N., & Roberts, D. A. ( 1996 ). The organized nonlinear dynamics of the magnetosphere. Journal of Geophysical Research, 101, 13,089 – 13,114.
dc.identifier.citedreferenceLandau, L. D. ( 1944 ). On the problem of turbulence. Dokl. akad. nauk sssr, 44, 339 – 349.
dc.identifier.citedreferenceLee, L., Johnson, J. R., & Ma, Z. ( 1994 ). Kinetic alfvén waves as a source of plasma transport at the dayside magnetopause. Journal of Geophysical Research, 99 ( A9 ), 17,405 – 17,411.
dc.identifier.citedreferenceLovejoy, S., & Schertzer, D. ( 1998 ). Stochastic chaos and multifractal geophysics. Chaos, Fractals and Models, 96, 38 – 52.
dc.identifier.citedreferenceMaggs, J., & Morales, G. ( 2013 ). Permutation entropy analysis of temperature fluctuations from a basic electron heat transport experiment. Plasma Physics and Controlled Fusion, 55 ( 8 ), 85015.
dc.identifier.citedreferenceMandelbrot, B. B., & Van Ness, J. W. ( 1968 ). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10 ( 4 ), 422 – 437.
dc.identifier.citedreferenceNewell, P., Sotirelis, T., Liou, K., Meng, C.‐I., & Rich, F. ( 2007 ). A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables. Journal of Geophysical Research, 112, A01206. https://doi.org/10.1029/2006JA012015
dc.identifier.citedreferenceNykyri, K., & Otto, A. ( 2001 ). Plasma transport at the magnetospheric boundary due to reconnection in Kelvin‐Helmholtz vortices. Geophysical Research Letters, 28 ( 18 ), 3565 – 3568.
dc.identifier.citedreferenceNykyri, K., Otto, A., Lavraud, B., Mouikis, C., Kistler, L. M., Balogh, A., & Rème, H. ( 2006 ). Cluster observations of reconnection due to the Kelvin‐Helmholtz instability at the dawnside magnetospheric flank. Annales Geophysicae, 24, 2619 – 2643.
dc.identifier.citedreferenceOsborne, ARo, & Provenzale, A. ( 1989 ). Finite correlation dimension for stochastic systems with power‐law spectra. Physica D: Nonlinear Phenomena, 35 ( 3 ), 357 – 381.
dc.identifier.citedreferenceOsmane, A., Dimmock, A., Naderpour, R., Pulkkinen, T., & Nykyri, N. ( 2015 ). The impact of solar wind ULF b z fluctuations on geomagnetic activity for viscous timescales during strongly northward and southward IMF. Journal of Geophysical Research: Space Physics, 120, 9307 – 9322. https://doi.org/10.1002/2015JA021505
dc.identifier.citedreferenceOtt, E. ( 2002 ). Chaos in dynamical systems. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferencePavlos, G., Kyriakou, G., Rigas, A., Liatsis, P., Trochoutsos, P., & Tsonis, A. ( 1992 ). Evidence for strange attractor structures in space plasmas. In Annales Geophysicae, 10, 309 – 322.
dc.identifier.citedreferencePrichard, D., & Price, C. ( 1992 ). Spurious dimension estimates from time series of geomagnetic indices. Geophysical Research Letters, 19 ( 15 ), 1623 – 1626.
dc.identifier.citedreferencePulkkinen, T. ( 2007 ). Space weather: Terrestrial perspective. Living Reviews in Solar Physics, 4 ( 1 ), 60.
dc.identifier.citedreferencePulkkinen, A., Klimas, A., Vassiliadis, D., & Uritsky, V. ( 2006 ). Role of stochastic fluctuations in the magnetosphere‐ionosphere system: A stochastic model for the AE index variations. Journal of Geophysical Research, 111, A10218. https://doi.org/10.1029/2006JA011661
dc.identifier.citedreferenceRiedl, M., Muller, A., & Wessel, N. ( 2013 ). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222, 249.
dc.identifier.citedreferenceRoberts, D. A. ( 1991 ). Is there a strange attractor in the magnetosphere? Journal of Geophysical Research, 96 ( A9 ), 16,031 – 16,046.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.