Show simple item record

Are Saturn’s Interchange Injections Organized by Rotational Longitude?

dc.contributor.authorAzari, A. R.
dc.contributor.authorJia, X.
dc.contributor.authorLiemohn, M. W.
dc.contributor.authorHospodarsky, G. B.
dc.contributor.authorProvan, G.
dc.contributor.authorYe, S.‐y.
dc.contributor.authorCowley, S. W. H.
dc.contributor.authorParanicas, C.
dc.contributor.authorSergis, N.
dc.contributor.authorRymer, A. M.
dc.contributor.authorThomsen, M. F.
dc.contributor.authorMitchell, D. G.
dc.date.accessioned2019-05-31T18:26:33Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03
dc.identifier.citationAzari, A. R.; Jia, X.; Liemohn, M. W.; Hospodarsky, G. B.; Provan, G.; Ye, S.‐y. ; Cowley, S. W. H.; Paranicas, C.; Sergis, N.; Rymer, A. M.; Thomsen, M. F.; Mitchell, D. G. (2019). "Are Saturn’s Interchange Injections Organized by Rotational Longitude?." Journal of Geophysical Research: Space Physics 124(3): 1806-1822.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/149274
dc.description.abstractSaturn’s magnetosphere has been extensively studied over the past 13 years with the now retired Cassini mission. Periodic modulations in a variety of magnetospheric phenomena have been observed at periods close to those associated with the emission intensity of Saturn kilometric radiation (SKR). Resulting from Rayleighâ Taylor like plasma instabilities, interchange is believed to be the main plasma transport process in Saturn’s inner to middle magnetosphere. Here we examine the organization of equatorially observed interchange events identified based on highâ energy (3â 22 keV) H+ intensifications by several longitude systems that have been derived from different types of measurements. The main question of interest here is as follows: Do interchange injections undergo periodicities similar to the Saturn kilometric radiation or other magnetospheric phenomena? We find that interchange shows enhanced occurrence rates in the northern longitude systems between 30° and 120°, particularly between 7 and 9 Saturn Radii. However, this modulation is small compared to the organization by local time. Additionally, this organization is weak and inconsistent with previous findings based on data with a limited time span.Plain Language SummaryWhen estimating the rotation rate of Jupiter and Saturn, scientists often use a periodic signal of radio emission from the planet’s auroral region. At Saturn this emission is called the Saturn kilometric radiation (SKR), and unlike Jupiter, the period of SKR is observed to vary over time. Similar periodic variations have also been observed in particle energy and magnetic fields, suggesting that this periodicity is a fundamental property of the Saturn space environment. In this work, we ask if these same repetitions can be seen in a process called interchange injection. To do this, we analyze interchange’s occurrence rate, as observed in particle data from the Cassini spacecraft, with respect to two longitude systems previously derived from the observed periods of the SKR emission. We find that interchange occurrence shows only weak organization in these longitude systems as compared to organization by local time.Key PointsInterchange injections, identified from an automated detection method, shows strongest organization in local time compared to longitudeLongitude system dependence of equatorial interchange injections exists, but it is weak and inconsistent to previous worksInterchange occurrence rates weakly peak at ~90° in northern SLSâ 5 and PPO between 7 and 9 Saturn Radii but occur at all longitudes and seasons
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSaturn’s magnetosphere
dc.subject.otherinterchange injections
dc.subject.otherenergetic particles
dc.subject.otherplasma transport
dc.subject.otherrotational modulation
dc.subject.otherstatistics
dc.titleAre Saturn’s Interchange Injections Organized by Rotational Longitude?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149274/1/jgra54783_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149274/2/jgra54783.pdf
dc.identifier.doi10.1029/2018JA026196
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceProvan, G., Cowley, S. W. H., Sandhu, J., Andrews, D. J., & Dougherty, M. K. ( 2013 ). Planetary period magnetic field oscillations in Saturn’s magnetosphere: Post equinox abrupt nonmonotonic transitions to northern system dominance. Journal of Geophysical Research: Space Physics, 118, 3243 â 3264. https://doi.org/10.1002/jgra.50186
dc.identifier.citedreferenceKrimigis, S. M., Mitchell, D. G., Hamilton, D. C., Livi, S., Dandouras, J., Jaskulek, S., Armstrong, T. P., Boldt, J. D., Cheng, A. F., Gloeckler, G., Hayes, J. R., Hsieh, K. C., Ip, W. H., Keath, E. P., Kirsch, E., Krupp, N., Lanzerotti, L. J., Lundgren, R., Mauk, B. H., McEntire, R. W., Roelof, E. C., Schlemm, C. E., Tossman, B. E., Wilken, B., & Williams, D. J. ( 2004 ). Magnetosphere Imaging Instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Science Reviews, 114 ( 1â 4 ), 233 â 329. https://doi.org/10.1007/s11214â 004â 1410â 8
dc.identifier.citedreferenceKurth, W. S., Averkamp, T. F., Gurnett, D. A., Groene, J. B., & Lecacheux, A. ( 2008 ). An update to a Saturnian longitude system based on kilometric radio emissions. Journal of Geophysical Research, 113, A05222,. https://doi.org/10.1029/2007JA012861
dc.identifier.citedreferenceLai, H. R., Russell, C. T., Jia, Y. D., Wei, H. Y., & Dougherty, M. K. ( 2016 ). Transport of magnetic flux and mass in Saturn’s inner magnetosphere. Journal of Geophysical Research: Space Physics, 121, 790 â 803. https://doi.org/10.1002/2015JA021980
dc.identifier.citedreferenceLamy, L. ( 2017 ). The Saturnian kilometric radiation before the Cassini Grand Finale. In G. Fischer, G. Mann, M. Panchenko, & P. Zarka (Eds.), Planetary radio emissions (Vol. 8, pp. 171 â 190 ).
dc.identifier.citedreferenceLiu, X., Hill, T. W., Wolf, R. A., Sazykin, S., Spiro, R. W., & Wu, H. ( 2010 ). Numerical simulation of plasma transport in Saturn’s inner magnetosphere using the Rice convection model. Journal of Geophysical Research, 115, A12254. https://doi.org/10.1029/2010JA015859
dc.identifier.citedreferenceNichols, J. D., Cecconi, B., Clarke, J. T., Cowley, S. W. H., Gérard, J.â C., Grocott, A., Grodent, D., Lamy, L., & Zarka, P. ( 2010 ). Variation of Saturn’s UV aurora with SKR phase. Geophysical Research Letters, 37, L15102. https://doi.org/10.1029/2010GL044057
dc.identifier.citedreferenceParanicas, C., Mitchell, D. G., Roelof, E. C., Brandt, P. C., Williams, D. J., Krimigis, S. M., & Mauk, B. H. ( 2005 ). Periodic intensity variations in global ENA images of Saturn. Geophysical Research Letters, 32, L21101. https://doi.org/10.1029/2005GL023656
dc.identifier.citedreferenceParanicas, C., Thomsen, M. F., Achilleos, N., Andriopoulou, M., Badman, S. V., Hospodarsky, G., Jackman, C. M., Jia, X., Kennelly, T., Khurana, K., Kollmann, P., Krupp, N., Louarn, P., Roussos, E., & Sergis, N. ( 2016 ). Effects of radial motion on interchange njections at Saturn. Icarus, 264, 342 â 351. https://doi.org/10.1016/j.icarus.2015.10.002
dc.identifier.citedreferencePorco, C. C., & Danielson, G. E. ( 1982 ). The periodic variation of spokes in Saturn’s rings. The Astronomical Journal, 87 ( 5 ), 826. https://doi.org/10.1086/113162
dc.identifier.citedreferenceProvan, G., Andrews, D. J., Arridge, C. S., Coates, A. J., Cowley, S. W. H., Cox, G., Dougherty, M. K., & Jackman, C. M. ( 2012 ). Dual periodicities in planetaryâ period magnetic field oscillations in Saturn’s tail. Journal of Geophysical Research, 117, A01209. https://doi.org/10.1029/2011JA017104
dc.identifier.citedreferenceProvan, G., Andrews, D. J., Arridge, C. S., Coates, A. J., Cowley, S. W. H., Milan, S. E., Dougherty, M. K., & Wright, D. M. ( 2009 ). Polarization and phase of planetaryâ period magnetic field oscillations on highâ latitude field lines in Saturn’s magnetosphere. Journal of Geophysical Research, 114, A02225. https://doi.org/10.1029/2008JA013782
dc.identifier.citedreferenceProvan, G., Cowley, S. W. H., Bradley, T. J., Bunce, E. J., Hunt, G. J., & Dougherty, M. K. ( 2018 ). Planetary period oscillations in Saturn’s magnetosphere: Cassini magnetic field observations over the northern summer solstice interval. Journal of Geophysical Research: Space Physics, 123, 3859 â 3899. https://doi.org/10.1029/2018JA025237
dc.identifier.citedreferenceProvan, G., Cowley, S. W. H., Lamy, L., Bunce, E. J., Hunt, G. J., Zarka, P., & Dougherty, M. K. ( 2016 ). Planetary period oscillations in Saturn’s magnetosphere: Coalescence and reversal of northern and southern periods in late northern spring. Journal of Geophysical Research: Space Physics, 121, 9829 â 9862. https://doi.org/10.1002/2016JA023056
dc.identifier.citedreferenceProvan, G., Lamy, L., Cowley, S. W. H., & Dougherty, M. K. ( 2014 ). Planetary period oscillations in Saturn’s magnetosphere: Comparison of magnetic oscillations and SKR modulations in the post equinox interval. Journal of Geophysical Research: Space Physics, 119, 7380 â 7401. https://doi.org/10.1002/2014JA020011
dc.identifier.citedreferenceRamer, K. M., Kivelson, M. G., Sergis, N., Khurana, K. K., & Jia, X. ( 2017 ). Spinning, breathing, and flapping: Periodicities in Saturn’s middle magnetosphere. Journal of Geophysical Research: Space Physics, 122, 393 â 416. https://doi.org/10.1002/2016JA023126
dc.identifier.citedreferenceRoussos, E., Krupp, N., Paranicas, C., Carbary, J. F., Kollmann, P., Krimigis, S. M., & Mitchell, D. G. ( 2014 ). The variable extension of Saturn’s electron radiation belts. Planetary and Space Science, 104, 3 â 17. https://doi.org/10.1016/j.pss.2014.03.021
dc.identifier.citedreferenceRymer, A. M., Mauk, B. H., Hill, T. W., André, N., Mitchell, D. G., Paranicas, C., Young, D. T., Smith, H. T., Persoon, A. M., Menietti, J. D., Hospodarsky, G. B., Coates, A. J., & Dougherty, M. K. ( 2009 ). Cassini evidence for rapid interchange transport at Saturn. Planetary and Space Science, 57 ( 14â 15 ), 1779 â 1784. https://doi.org/10.1016/j.pss.2009.04.010
dc.identifier.citedreferenceSeidelmann, P. K., & Divine, N. ( 1977 ). Evaluation of Jupiter longitudes in system III (1965). Geophysical Research Letters, 4 ( 2 ), 65 â 68. https://doi.org/10.1029/GL004i002p00065
dc.identifier.citedreferenceSergis, N., Jackman, C. M., Thomsen, M. F., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Dougherty, M. K., Krupp, N., & Wilson, R. J. ( 2017 ). Radial and local time structure of the Saturnian ring current, revealed by Cassini. Journal of Geophysical Research: Space Physics, 122, 1803 â 1815. https://doi.org/10.1002/2016JA023742
dc.identifier.citedreferenceShain, C. A. ( 1955 ). Location on Jupiter of a source of radio noise. Nature, 176 ( 4487 ), 836 â 837. https://doi.org/10.1038/176836a0
dc.identifier.citedreferenceSmith, C. G. A. ( 2006 ). Periodic modulation of gas giant magnetospheres by the neutral upper atmosphere. Annales Geophysicae, 24 ( 10 ), 2709 â 2717. https://doi.org/10.5194/angeoâ 24â 2709â 2006
dc.identifier.citedreferenceSouthwood, D. J., & Cowley, S. W. H. ( 2014 ). The origin of Saturn’s magnetic periodicities: Northern and southern current systems. Journal of Geophysical Research: Space Physics, 119, 1563 â 1571. https://doi.org/10.1002/2013JA019632
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1987 ). Magnetospheric interchange instability. Journal of Geophysical Research, 92 ( A1 ), 109 â 116. https://doi.org/10.1029/JA092iA01p00109
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1989 ). Magnetospheric interchange motions. Journal of Geophysical Research, 94 ( A1 ), 299 â 308. https://doi.org/10.1029/JA094iA01p00299
dc.identifier.citedreferenceStevenson, D. J. ( 2006 ). A new spin on Saturn. Nature, 441 ( 7089 ), 34 â 35. https://doi.org/10.1038/441034a
dc.identifier.citedreferenceThomsen, M. F. ( 2013 ). Saturn’s magnetospheric dynamics. Geophysical Research Letters, 40, 5337 â 5344. https://doi.org/10.1002/2013GL057967
dc.identifier.citedreferenceThomsen, M. F., Coates, A. J., Roussos, E., Wilson, R. J., Hansen, K. C., & Lewis, G. R. ( 2016 ). Suprathermal electron penetration into the inner magnetosphere of Saturn. Journal of Geophysical Research: Space Physics, 121, 5436 â 5448. https://doi.org/10.1002/2016JA022692
dc.identifier.citedreferenceThomsen, M. F., Reisenfeld, D. B., Delapp, D. M., Tokar, R. L., Young, D. T., Crary, F. J., Sittler, E. C., McGraw, M. A., & Williams, J. D. ( 2010 ). Survey of ion plasma parameters in Saturn’s magnetosphere. Journal of Geophysical Research, 115, A10220. https://doi.org/10.1029/2010JA015267
dc.identifier.citedreferenceWilson, R. J., Bagenal, F., & Persoon, A. M. ( 2017 ). Survey of thermal plasma ions in Saturn’s magnetosphere utilizing a forward model. Journal of Geophysical Research: Space Physics, 122, 7256 â 7278. https://doi.org/10.1002/2017JA024117
dc.identifier.citedreferenceYe, S. Y., Fischer, G., Kurth, W. S., Menietti, J. D., & Gurnett, D. A. ( 2016 ). Rotational modulation of Saturn’s radio emissions after equinox. Journal of Geophysical Research: Space Physics, 121, 11,714 â 11,728. https://doi.org/10.1002/2016JA023281
dc.identifier.citedreferenceYe, S.â Y., Fischer, G., Kurth, W. S., Menietti, J. D., & Gurnett, D. A. ( 2018 ). An SLS5 longitude system based on the rotational modulation of Saturn radio emissions. Geophysical Research Letters, 45, 7297 â 7305. https://doi.org/10.1029/2018GL077976
dc.identifier.citedreferenceYu, Z. J., & Russell, C. T. ( 2009 ). Rotation period of Jupiter from the observation of its magnetic field. Geophysical Research Letters, 36, L20202. https://doi.org/10.1029/2009GL040094
dc.identifier.citedreferenceAndré, N., Dougherty, M. K., Russell, C. T., Leisner, J. S., & Khurana, K. K. ( 2005 ). Dynamics of the Saturnian inner magnetosphere: First inferences from the Cassini magnetometers about smallâ scale plasma transport in the magnetosphere. Geophysical Research Letters, 32, L14S06. https://doi.org/10.1029/2005GL022643
dc.identifier.citedreferenceAndré, N., Persoon, A. M., Goldstein, J., Burch, J. L., Louarn, P., Lewis, G. R., Rymer, A. M., Coates, A. J., Kurth, W. S., Sittler, E. C. Jr., Thomsen, M. F., Crary, F. J., Dougherty, M. K., Gurnett, D. A., & Young, D. T. ( 2007 ). Magnetic signatures of plasmaâ depleted flux tubes in the Saturnian inner magnetosphere. Geophysical Research Letters, 34, L14108. https://doi.org/10.1029/2007GL030374
dc.identifier.citedreferenceAndrews, D. J., Bunce, E. J., Cowley, S. W. H., Dougherty, M. K., Provan, G., & Southwood, D. J. ( 2008 ). Planetary period oscillations in Saturn’s magnetosphere: Phase relation of equatorial magnetic field oscillations and Saturn kilometric radiation modulation. Journal of Geophysical Research, 113, A09205. https://doi.org/10.1029/2007JA012937
dc.identifier.citedreferenceAndrews, D. J., Cowley, S. W. H., Dougherty, M. K., Lamy, L., Provan, G., & Southwood, D. J. ( 2012 ). Planetary period oscillations in Saturn’s magnetosphere: Evolution of magnetic oscillation properties from southern summer to postâ equinox. Journal of Geophysical Research, 117, A04224. https://doi.org/10.1029/2011JA017444
dc.identifier.citedreferenceAzari, A. R., Liemohn, M. W., Jia, X., Thomsen, M. F., Mitchell, D. G., Sergis, N., Rymer, A. M., Hospodarsky, G. B., Paranicas, C., & Vandegriff, J. ( 2018 ). Interchange injections at Saturn: Statistical survey of energetic H+ sudden flux intensifications. Journal of Geophysical Research: Space Physics, 123, 4692 â 4711. https://doi.org/10.1029/2018JA025391
dc.identifier.citedreferenceBurch, J. L., Goldstein, J., Hill, T. W., Young, D. T., Crary, F. J., & Coates, a. J., â ¦ Sittler, E. C. ( 2005 ). Properties of local plasma injections in Saturn’s magnetosphere. Geophysical Research Letters, 32, L14S02. https://doi.org/10.1029/2005GL022611
dc.identifier.citedreferenceCarbary, J. F., & Mitchell, D. G. ( 2013 ). Periodicities in Saturn’s magnetosphere. Reviews of Geophysics, 51, 1 â 30. https://doi.org/10.1002/rog.20006
dc.identifier.citedreferenceCarbary, J. F., Mitchell, D. G., Krimigis, S. M., & Krupp, N. ( 2007 ). Electron periodicities in Saturn’s outer magnetosphere. Journal of Geophysical Research, 112, A03206. https://doi.org/10.1029/2006JA012077
dc.identifier.citedreferenceCecconi, B., & Zarka, P. ( 2005 ). Model of a variable radio period for Saturn. Journal of Geophysical Research, 110, A12203. https://doi.org/10.1029/2005JA011085
dc.identifier.citedreferenceChen, Y., & Hill, T. W. ( 2008 ). Statistical analysis of injection/dispersion events in Saturn’s inner magnetosphere. Journal of Geophysical Research, 113, A07215. https://doi.org/10.1029/2008JA013166
dc.identifier.citedreferenceChen, Y., Hill, T. W., Rymer, A. M., & Wilson, R. J. ( 2010 ). Rate of radial transport of plasma in Saturn’s inner magnetosphere. Journal of Geophysical Research, 115, A10211. https://doi.org/10.1029/2010JA015412
dc.identifier.citedreferenceCowley, S. W. H., & Provan, G. ( 2016 ). Planetary period oscillations in Saturn’s magnetosphere: Further comments on the relationship between postâ equinox properties deduced from magnetic field and Saturn kilometric radiation measurements. Icarus, 272, 258 â 276. https://doi.org/10.1016/j.icarus.2016.02.051
dc.identifier.citedreferenceDejong, A. D., Burch, J. L., Goldstein, J., Coates, A. J., & Young, D. T. ( 2010 ). Lowâ energy electrons in Saturn’s inner magnetosphere and their role in interchange injections. Journal of Geophysical Research, 115, A10229. https://doi.org/10.1029/2010JA015510
dc.identifier.citedreferenceDesch, M. D., & Kaiser, M. L. ( 1981 ). Voyager measurement of the rotation period of Saturn’s magnetic field. Geophysical Research Letters, 8 ( 3 ), 253 â 256. https://doi.org/10.1029/GL008i003p00253
dc.identifier.citedreferenceDougherty, M. K., Cao, H., Khurana, K. K., Hunt, G. J., Provan, G., Kellock, S., Burton, M. E., Burk, T. A., Bunce, E. J., Cowley, S. W. H., Kivelson, M. G., Russell, C. T., & Southwood, D. J. ( 2018 ). Saturn’s magnetic field revealed by the Cassini Grand Finale. Science, 362 ( 6410 ), eaat5434. https://doi.org/10.1126/science.aat5434
dc.identifier.citedreferenceDouglas, J. N. ( 1960 ). A study of nonâ thermal radio emission from Jupiter. H.D. Dissertation, Yale University, New Haven, 1962â 1963. Retrieved from http://search.proquest.com/docview/302239822/citation/9F7E6667508A4F0DPQ/3?accountid=28962
dc.identifier.citedreferenceDuncan, R. A. ( 1975 ). Jupiter’s rotation period from dekametric observations 1951â 1975. Publications of the Astronomical Society of Australia, 2 ( 06 ), 342 â 345. https://doi.org/10.1017/S1323358000014211
dc.identifier.citedreferenceFischer, G., Gurnett, D. A., Kurth, W. S., Ye, S. Y., & Groene, J. B. ( 2015 ). Saturn kilometric radiation periodicity after equinox. Icarus, 254, 72 â 91. https://doi.org/10.1016/j.icarus.2015.03.014
dc.identifier.citedreferenceFranklin, K. L., & Burke, B. F. ( 1958 ). Radio observations of the planet Jupiter. Journal of Geophysical Research, 63 ( 4 ), 807 â 824. https://doi.org/10.1029/JZ063i004p00807
dc.identifier.citedreferenceGalopeau, P. H. M., & Lecacheux, A. ( 2000 ). Variations of Saturn’s radio rotation period measured at kilometer wavelengths. Journal of Geophysical Research, 105 ( A6 ), 13,089 â 13,101. https://doi.org/10.1029/1999JA005089
dc.identifier.citedreferenceGoldreich, P., & Farmer, A. J. ( 2007 ). Spontaneous axisymmetry breaking of the external magnetic field at Saturn. Journal of Geophysical Research, 112, A05225. https://doi.org/10.1029/2006JA012163
dc.identifier.citedreferenceGurnett, D. A., Groene, J. B., Averkamp, T. F., Kurth, W. S., Ye, S.â Y., & Fischer, G. ( 2011 ). An SLS4 longitude system based on a tracking filter analysis of the rotational modulation of Saturn kilometric radiation. Planetary Radio Emissions, 7, 51 â 64. https://doi.org/10.1553/PRE7s51
dc.identifier.citedreferenceGurnett, D. A., Kurth, W. S., Hospodarsky, G. B., Persoon, A. M., Averkamp, T. F., Cecconi, B., Lecacheux, A., Zarka, P., Canu, P., Cornilleauâ Wehrlin, N., Galopeau, P., Roux, A., Harvey, C., Louarn, P., Bostrom, R., Gustafsson, G., Wahlund, J. E., Desch, M. D., Farrell, W. M., Kaiser, M. L., Goetz, K., Kellogg, P. J., Fischer, G., Ladreiter, H. P., Rucker, H., Alleyne, H., & Pedersen, A. ( 2005 ). Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science, 307 ( 5713 ), 1255 â 1259. https://doi.org/10.1126/science.1105356
dc.identifier.citedreferenceGurnett, D. A., Lecacheux, A., Kurth, W. S., Persoon, A. M., Groene, J. B., Lamy, L., Zarka, P., & Carbary, J. F. ( 2009 ). Discovery of a northâ south asymmetry in Saturn’s radio rotation period. Geophysical Research Letters, 36, L16102. https://doi.org/10.1029/2009GL039621
dc.identifier.citedreferenceGurnett, D. A., Persoon, A. M., Groene, J. B., Kopf, A. J., Hospodarsky, G. B., & Kurth, W. S. ( 2009 ). A northâ south difference in the rotation rate of auroral hiss at Saturn: Comparison to Saturn’s kilometric radio emission. Geophysical Research Letters, 36, L21108. https://doi.org/10.1029/2009GL040774
dc.identifier.citedreferenceGurnett, D. A., Persoon, A. M., Kurth, W. S., Groene, J. B., Averkamp, T. F., Dougherty, M. K., & Southwood, D. J. ( 2007 ). The variable rotation period of the inner region of Saturn’s plasma disk. Science, 316 ( 5823 ), 442 â 445. https://doi.org/10.1126/science.1138562
dc.identifier.citedreferenceHill, T. W. ( 2016 ). Penetraing of external plasma into a rotationâ driven magnetosphere. Journal of Geophysical Research: Space Physics, 121, 10,032 â 10,036. https://doi.org/10.1002/2016JA023430
dc.identifier.citedreferenceHill, T. W., Rymer, A. M., Burch, J. L., Crary, F. J., Young, D. T., Thomsen, M. F., Delapp, D., André, N., Coates, A. J., & Lewis, G. R. ( 2005 ). Evidence for rotationally driven plasma transport in Saturn’s magnetosphere. Geophysical Research Letters, 32, L14S10. https://doi.org/10.1029/2005GL022620
dc.identifier.citedreferenceHunt, G. J., Cowley, S. W. H., Provan, G., Bunce, E. J., Alexeev, I. I., Belenkaya, E. S., Kalegaev, V. V., Dougherty, M. K., & Coates, A. J. ( 2014 ). Fieldâ aligned currents in Saturn’s southern nightside magnetosphere: Subcorotation and planetary period oscillation components. Journal of Geophysical Research: Space Physics, 119, 9847 â 9899. https://doi.org/10.1002/2014JA020506
dc.identifier.citedreferenceHunt, G. J., Cowley, S. W. H., Provan, G., Bunce, E. J., Alexeev, I. I., Belenkaya, E. S., Kalegaev, V. V., Dougherty, M. K., & Coates, A. J. ( 2015 ). Fieldâ aligned currents in Saturn’s northern nightside magnetosphere: Evidence for interhemispheric current flow associated with planetary period oscillations. Journal of Geophysical Research: Space Physics, 120, 7552 â 7584. https://doi.org/10.1002/2015JA021454
dc.identifier.citedreferenceJia, X., & Kivelson, M. G. ( 2012 ). Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources. Journal of Geophysical Research, 117, A11219. https://doi.org/10.1029/2012JA018183
dc.identifier.citedreferenceJia, X., Kivelson, M. G., & Gombosi, T. I. ( 2012 ). Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. Journal of Geophysical Research, 117, A04215. https://doi.org/10.1029/2011JA017367
dc.identifier.citedreferenceKennelly, T. J., Leisner, J. S., Hospodarsky, G. B., & Gurnett, D. A. ( 2013 ). Ordering of injection events within Saturnian SLS longitude and local time. Journal of Geophysical Research: Space Physics, 118, 832 â 838. https://doi.org/10.1002/jgra.50152
dc.identifier.citedreferenceKhurana, K. K., Mitchell, D. G., Arridge, C. S., Dougherty, M. K., Russell, C. T., Paranicas, C., Krupp, N., & Coates, A. J. ( 2009 ). Sources of rotational signals in Saturn’s magnetosphere. Journal of Geophysical Research, 114, A02211. https://doi.org/10.1029/2008JA013312
dc.identifier.citedreferenceKollmann, P., Roussos, E., Kotova, A., Paranicas, C., & Krupp, N. ( 2017 ). The evolution of Saturn’s radiation belts modulated by changes in radial diffusion. Nature Astronomy, 1 ( 12 ), 872 â 877. https://doi.org/10.1038/s41550â 017â 0287â x
dc.identifier.citedreferenceKomori, A., Sato, N., & Hatta, Y. ( 1978 ). Excitation and control of the Rayleighâ Taylor instability in a plasma with a curved magnetic field. Physical Review Letters, 40 ( 12 ), 768 â 771. https://doi.org/10.1103/PhysRevLett.40.768
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.