Show simple item record

Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections

dc.contributor.authorKilpua, E. K. J.
dc.contributor.authorTurner, D. L.
dc.contributor.authorJaynes, A. N.
dc.contributor.authorHietala, H.
dc.contributor.authorKoskinen, H. E. J.
dc.contributor.authorOsmane, A.
dc.contributor.authorPalmroth, M.
dc.contributor.authorPulkkinen, T. I.
dc.contributor.authorVainio, R.
dc.contributor.authorBaker, D.
dc.contributor.authorClaudepierre, S. G.
dc.date.accessioned2019-05-31T18:26:54Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03
dc.identifier.citationKilpua, E. K. J.; Turner, D. L.; Jaynes, A. N.; Hietala, H.; Koskinen, H. E. J.; Osmane, A.; Palmroth, M.; Pulkkinen, T. I.; Vainio, R.; Baker, D.; Claudepierre, S. G. (2019). "Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections." Journal of Geophysical Research: Space Physics 124(3): 1927-1947.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/149291
dc.description.abstractWe study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15–22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock‐compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substructures and their conditions that influenced the Earth’s magnetosphere. In particular, the main depletions occurred during a high‐dynamic pressure sheath and shock‐compressed southward ejecta fields. These structures compressed/eroded the magnetopause close to geostationary orbit and induced intense and diverse wave activity in the inner magnetosphere (ULF Pc5, electromagnetic ion cyclotron, and hiss) facilitating both effective magnetopause shadowing and precipitation losses. Seed and source electrons in turn experienced stronger variations throughout the studied interval. The core fluxes recovered during the last ICME that made a glancing blow to Earth. This period was characterized by a concurrent lack of losses and sustained acceleration by chorus and Pc5 waves. Our study highlights that the seemingly complex behavior of the outer belt during interacting ICMEs can be understood by the knowledge of electron dynamics during different substructures.Key PointsDetailed response of the outer belt to substructures in a complex solar wind driver is investigatedMost substructures in the interacting ICMEs here deplete the core radiation belt population but inject source electronsCore electrons were enhanced during sustained chorus and Pc5 activity and lack of losses
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Geophysical Union
dc.subject.otherinterplanetary coronal mass ejections
dc.subject.otherradiation belts
dc.subject.otherouter belt
dc.subject.othersolar wind
dc.subject.othermagnetospheric waves
dc.subject.othermagnetospheric storm
dc.titleOuter Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149291/1/jgra54856_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149291/2/jgra54856.pdf
dc.identifier.doi10.1029/2018JA026238
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSelesnick, R. S., Blake, J. B., & Mewaldt, R. A. ( 2003 ). Atmospheric losses of radiation belt electrons. Journal of Geophysical Research, 108 ( A12 ), 1468. https://doi.org/10.1029/2003JA010160
dc.identifier.citedreferenceNieves‐Chinchilla, T., Vourlidas, A., Raymond, J. C., Linton, M. G., Al‐haddad, N., Savani, N. P., Szabo, A., & Hidalgo, M. A. ( 2018 ). Understanding the internal magnetic field configurations of ICMEs using more than 20 years of Wind observations. Solar Physics, 293, 25. https://doi.org/10.1007/s11207-018-1247-z
dc.identifier.citedreferenceO’Brien, T. P. ( 2009 ). SEAES‐GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit. Space Weather, 7, 09003. https://doi.org/10.1029/2009SW000473
dc.identifier.citedreferenceOlson, W. P., & Pfitzer, K. A. ( 1977 ). Magnetospheric magnetic field modeling, Tech. rep. Annual Report McDonnell‐Douglas Astronautics Co., Huntington Beach, CA.
dc.identifier.citedreferenceOsmane, A., Wilson, L. B., Blum, L. III, & Pulkkinen, T. I. ( 2016 ). On the connection between microbursts and nonlinear electronic structures in planetary radiation belts. The Astrophysical Journal, 816, 51. https://doi.org/10.3847/0004-637X/816/2/51
dc.identifier.citedreferenceRae, I. J., Donovan, E. F., Mann, I. R., Fenrich, F. R., Watt, C. E. J., Milling, D. K., Lester, M., Lavraud, B., Wild, J. A., Singer, H. J., RèMe, H., & Balogh, A. ( 2005 ). Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. Journal of Geophysical Research, 110, A12211. https://doi.org/10.1029/2005JA011007
dc.identifier.citedreferenceReeves, G. D., Friedel, R. H. W., Larsen, B. A., Skoug, R. M., Funsten, H. O., Claudepierre, S. G., Fennell, J. F., Turner, D. L., Denton, M. H., Spence, H. E., Blake, J. B., & Baker, D. N. ( 2016 ). Energy‐dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions. Journal of Geophysical Research: Space Physics, 121, 397 – 412. https://doi.org/10.1002/2015JA021569
dc.identifier.citedreferenceReeves, G. D., McAdams, K. L., Friedel, R. H. W., & O’Brien, T. P. ( 2003 ). Acceleration and loss of relativistic electrons during geomagnetic storms. Geophysical Research Letters, 30 ( 10 ), 1529. https://doi.org/10.1029/2002GL016513
dc.identifier.citedreferenceReeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H. W., Funsten, H. O., Baker, D. N., Kanekal, S. G., Blake, J. B., Fennell, J. F., Claudepierre, S. G., Thorne, R. M., Turner, D. L., Kletzing, C. A., Kurth, W. S., Larsen, B. A., & Niehof, J. T. ( 2013 ). Electron acceleration in the heart of the Van Allen Radiation Belts. Science, 341, 991 – 994. https://doi.org/10.1126/science.1237743
dc.identifier.citedreferenceRichardson, I. G. ( 2018 ). Solar wind stream interaction regions throughout the heliosphere. Living Reviews in Solar Physics, 15, 1. https://doi.org/10.1007/s41116-017-0011-z
dc.identifier.citedreferenceShprits, Y. Y., Elkington, S. R., Meredith, N. P., & Subbotin, D. A. ( 2008 ). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport. Journal of Atmospheric and Solar‐Terrestrial Physics, 70, 1679 – 1693. https://doi.org/10.1016/j.jastp.2008.06.008
dc.identifier.citedreferenceShue, J.‐H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., & Kawano, H. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research, 103, 17,691 – 17,700. https://doi.org/10.1029/98JA01103
dc.identifier.citedreferenceSinger, H., Matheson, L., Grubb, R., Newman, A., & Bouwer, D. ( 1996 ). Monitoring space weather with the GOES magnetometers. In E. R. Washwell (Ed.), GOES‐8 and beyond, Proceedings of the SPIE (Vol.  2812, pp. 299 – 308 ). Boulder, CO: NOAA Space Environment Center. https://doi.org/10.1117/12.254077
dc.identifier.citedreferenceSmith, A. J., Freeman, M. P., & Reeves, G. D. ( 1996 ). Postmidnight VLF chorus events, a substorm signature observed at the ground near L  = 4. Journal of Geophysical Research, 101, 24,641 – 24,654. https://doi.org/10.1029/96JA02236
dc.identifier.citedreferenceSu, Z., Zhu, H., Xiao, F., Zong, Q.‐G., Zhou, X.‐Z., Zheng, H., Wang, Y., Wang, S., Hao, Y.‐X., Gao, Z., He, Z., Baker, D. N., Spence, H. E., Reeves, G. D., Blake, J. B., & Wygant, J. R. ( 2015 ). Ultra‐low‐frequency wave‐driven diffusion of radiation belt relativistic electrons. Nature Communications, 6, 10096. https://doi.org/10.1038/ncomms10096
dc.identifier.citedreferenceSummers, D., & Ma, C.‐Y. ( 2000 ). A model for generating relativistic electrons in the Earth’s inner magnetosphere based on gyroresonant wave‐particle interactions. Journal of Geophysical Research, 105, 2625 – 2640. https://doi.org/10.1029/1999JA900444
dc.identifier.citedreferenceSummers, D., Ni, B., & Meredith, N. P. ( 2007 ). Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. Journal of Geophysical Research, 112, A04207. https://doi.org/10.1029/2006JA011993
dc.identifier.citedreferenceSummers, D., Omura, Y., Nakamura, S., & Kletzing, C. A. ( 2014 ). Fine structure of plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 119, 9134 – 9149. https://doi.org/10.1002/2014JA020437
dc.identifier.citedreferenceSummers, D., & Thorne, R. M. ( 2003 ). Relativistic electron pitch‐angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. Journal of Geophysical Research, 108 ( A4 ), 1143. https://doi.org/10.1029/2002JA009489
dc.identifier.citedreferenceThorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Baker, D. N., Spence, H. E., Reeves, G. D., Henderson, M. G., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Blake, J. B., Fennell, J. F., Claudepierre, S. G., & Kanekal, S. G. ( 2013 ). Rapid local acceleration of relativistic radiation‐belt electrons by magnetospheric chorus. Nature, 504, 411 – 414. https://doi.org/10.1038/nature12889
dc.identifier.citedreferenceThorne, R. M., O’Brien, T. P., Shprits, Y. Y., Summers, D., & Horne, R. B. ( 2005 ). Timescale for MeV electron microburst loss during geomagnetic storms. Journal of Geophysical Research, 110, A09202. https://doi.org/10.1029/2004JA010882
dc.identifier.citedreferenceThorne, R. M., Smith, E. J., Burton, R. K., & Holzer, R. E. ( 1973 ). Plasmaspheric hiss. Journal of Geophysical Research, 78, 1581 – 1596. https://doi.org/10.1029/JA078i010p01581
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2005 ). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research, 110, A03208. https://doi.org/10.1029/2004JA010798
dc.identifier.citedreferenceTurner, D. L., Angelopoulos, V., Li, W., Bortnik, J., Ni, B., Ma, Q., Thorne, R. M., Morley, S. K., Henderson, M. G., Reeves, G. D., Usanova, M., Mann, I. R., Claudepierre, S. G., Blake, J. B., Baker, D. N., Huang, C.‐L., Spence, H., Kurth, W., Kletzing, C., & Rodriguez, J. V. ( 2014 ). Competing source and loss mechanisms due to wave‐particle interactions in Earth’s outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 119, 1960 – 1979. https://doi.org/10.1002/2014JA019770
dc.identifier.citedreferenceTurner, D. L., Angelopoulos, V., Li, W., Hartinger, M. D., Usanova, M., Mann, I. R., Bortnik, J., & Shprits, Y. ( 2013 ). On the storm‐time evolution of relativistic electron phase space density in Earth’s outer radiation belt. Journal of Geophysical Research: Space Physics, 118, 2196 – 2212. https://doi.org/10.1002/jgra.50151
dc.identifier.citedreferenceTurner, D. L., Kilpua, E. K. J., Hietala, H., Claudepierre, S. G., O’Brien, T. P., Fennell, J. F., Blake, J. B., Jaynes, A. L., Kankal, S., Baker, D. N., Spence, H. E., Ripoll, J. F., & Reeves, G. D. ( 2019 ). The response of Earth’s electron radiation belts to geomagnetic storms: Statistics from the Van Allen Probes era including effects from different storm drivers. Journal of Geophysical Research: Space Physics, 124, 9176 – 9184. https://doi.org/10.1029/2018JA026066
dc.identifier.citedreferenceTurner, D. L., O’Brien, T. P., Fennell, J. F., Claudepierre, S. G., Blake, J. B., Kilpua, E. K. J., & Hietala, H. ( 2015 ). The effects of geomagnetic storms on electrons in Earth’s radiation belts. Geophysical Research Letters, 42, 9176 – 9184. https://doi.org/10.1002/2015GL064747
dc.identifier.citedreferenceUsanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., Baker, D. N., Thaller, S. A., Reeves, G. D., Spence, H. E., Kletzing, C., & Wygant, J. ( 2014 ). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground‐based and Van Allen Probes observations. Geophysical Research Letters, 41, 1375 – 1381. https://doi.org/10.1002/2013GL059024
dc.identifier.citedreferenceVan Allen, J. A. ( 1981 ). Observations of high intensity radiation by satellites 1958 Alpha and 1958 Gamma. In P. A. Hanle, V. D. Chamberlain, & S. G. Brush (Eds.), Space science comes of age: Perspectives in the history of the space sciences (pp. 58 – 73 ). Washington, DC: Smithsonian Institution Press.
dc.identifier.citedreferenceWang, C.‐P., Thorne, R., Liu, T. Z., Hartinger, M. D., Nagai, T., Angelopoulos, V., Wygant, J. R., Breneman, A., Kletzing, C., Reeves, G. D., Claudepierre, S. G., & Spence, H. E. ( 2017 ). A multispacecraft event study of Pc5 ultralow‐frequency waves in the magnetosphere and their external drivers. Journal of Geophysical Research: Space Physics, 122, 5132 – 5147. https://doi.org/10.1002/2016JA023610
dc.identifier.citedreferenceWest, H. I., Buck, R. M., & Walton, J. R. ( 1972 ). Shadowing of electron azimuthal‐drift motions near the noon magnetopause. Nature Physical Science, 240, 6 – 7. https://doi.org/10.1038/physci240006a0
dc.identifier.citedreferenceXiao, F., Liu, S., Tao, X., Su, Z., Zhou, Q., Yang, C., He, Z., He, Y., Gao, Z., Baker, D. N., Spence, H. E., Reeves, G. D., Funsten, H. O., & Blake, J. B. ( 2017 ). Generation of extremely low frequency chorus in Van Allen radiation belts. Journal of Geophysical Research: Space Physics, 122, 3201 – 3211. https://doi.org/10.1002/2016JA023561
dc.identifier.citedreferenceZhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E., Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C.‐C., Yashiro, S., & Zhukov, A. N. ( 2007 ). Solar and interplanetary sources of major geomagnetic storms (Dst < = −100 nT) during 1996–2005. Journal of Geophysical Research, 112, A10102. https://doi.org/10.1029/2007JA012321
dc.identifier.citedreferenceAlves, L. R., Da Silva, L. A., Souza, V. M., Sibeck, D. G., Jauer, P. R., Vieira, L. E. A., Walsh, B. M., Silveira, M. V. D., Marchezi, J. P., Rockenbach, M., Lago, A. D., Mendes, O., Tsurutani, B. T., Koga, D., Kanekal, S. G., Baker, D. N., Wygant, J. R., & Kletzing, C. A. ( 2016 ). Outer radiation belt dropout dynamics following the arrival of two interplanetary coronal mass ejections. Geophysical Research Letters, 43, 978 – 987. https://doi.org/10.1002/2015GL067066
dc.identifier.citedreferenceArtemyev, A., Agapitov, O., Mourenas, D., Krasnoselskikh, V., Shastun, V., & Mozer, F. ( 2016 ). Oblique whistler‐mode waves in the Earth’s inner magnetosphere: Energy distribution, origins, and role in radiation belt dynamics. Space Science Reviews, 200, 261 – 355. https://doi.org/10.1007/s11214-016-0252-5
dc.identifier.citedreferenceArtemyev, A. V., Vasiliev, A. A., Mourenas, D., Agapitov, O. V., Krasnoselskikh, V., Boscher, D., & Rolland, G. ( 2014 ). Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves. Geophysical Research Letters, 41, 5727 – 5733. https://doi.org/10.1002/2014GL061380
dc.identifier.citedreferenceAubry, M. P., Russell, C. T., & Kivelson, M. G. ( 1970 ). Inward motion of the magnetopause before a substorm. Journal of Geophysical Research, 75, 7018. https://doi.org/10.1029/JA075i034p07018
dc.identifier.citedreferenceBaker, D. N., Erickson, P. J., Fennell, J. F., Foster, J. C., Jaynes, A. N., & Verronen, P. T. ( 2018 ). Space weather effects in the Earth’s radiation belts. Space Science Reviews, 214, 17. https://doi.org/10.1007/s11214-017-0452-7
dc.identifier.citedreferenceBaker, D. N., Jaynes, A. N., Li, X., Henderson, M. G., Kanekal, S. G., Reeves, G. D., Spence, H. E., Claudepierre, S. G., Fennell, J. F., Hudson, M. K., Thorne, R. M., Foster, J. C., Erickson, P. J., Malaspina, D. M., Wygant, J. R., Boyd, A., Kletzing, C. A., Drozdov, A., & Shprits, Y. Y. ( 2014 ). Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations. Geophysical Research Letters, 41, 1351 – 1358. https://doi.org/10.1002/2013GL058942
dc.identifier.citedreferenceBaker, D. N., Kanekal, S. G., Hoxie, V. C., Batiste, S., Bolton, M., Li, X., Elkington, S. R., Monk, S., Reukauf, R., Steg, S., Westfall, J., Belting, C., Bolton, B., Braun, D., Cervelli, B., Hubbell, K., Kien, M., Knappmiller, S., Wade, S., Lamprecht, B., Stevens, K., Wallace, J., Yehle, A., Spence, H. E., & Friedel, R. ( 2013 ). The Relativistic Electron‐Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: Characterization of Earth’s radiation belt high‐energy particle populations. Space Science Reviews, 179, 337 – 381. https://doi.org/10.1007/s11214-012-9950-9
dc.identifier.citedreferenceBaker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., Elkington, S. R., Friedel, R. H. W., Goldstein, J., Hudson, M. K., Reeves, G. D., Thorne, R. M., Kletzing, C. A., & Claudepierre, S. G. ( 2013 ). A long‐lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. Science, 340, 186 – 190. https://doi.org/10.1126/science.1233518
dc.identifier.citedreferenceBlake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., George, J. S., Henderson, M. G., Lalic, M., Lin, A. Y., Looper, M. D., Mabry, D. J., Mazur, J. E., McCarthy, B., Nguyen, C. Q., O’Brien, T. P., Perez, M. A., Redding, M. T., Roeder, J. L., Salvaggio, D. J., Sorensen, G. A., Spence, H. E., Yi, S., & Zakrzewski, M. P. ( 2013 ). The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft. Space Science Reviews, 179, 383 – 421. https://doi.org/10.1007/s11214-013-9991-8
dc.identifier.citedreferenceBortnik, J., Thorne, R. M., & Meredith, N. P. ( 2008 ). The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature, 452, 62 – 66. https://doi.org/10.1038/nature06741
dc.identifier.citedreferenceBoyd, A. J., Turner, D. L., Reeves, G. D., Spence, H. E., Baker, D. N., & Blake, J. B. ( 2018 ). What causes radiation belt enhancements: A survey of the Van Allen Probes era. Geophysical Research Letters, 45, 5253 – 5259. https://doi.org/10.1029/2018GL077699
dc.identifier.citedreferenceBrito, T., Woodger, L., Hudson, M., & Millan, R. ( 2012 ). Energetic radiation belt electron precipitation showing ULF modulation. Geophysical Research Letters, 39, L22104. https://doi.org/10.1029/2012GL053790
dc.identifier.citedreferenceCaliff, S., Li, X., Zhao, H., Kellerman, A., Sarris, T. E., Jaynes, A., & Malaspina, D. M. ( 2017 ). The role of the convection electric field in filling the slot region between the inner and outer radiation belts. Journal of Geophysical Research: Space Physics, 122, 2051 – 2068. https://doi.org/10.1002/2016JA023657
dc.identifier.citedreferenceCattell, C. A., Breneman, A. W., Thaller, S. A., Wygant, J. R., Kletzing, C. A., & Kurth, W. S. ( 2015 ). Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study. Geophysical Research Letters, 42, 7273 – 7281. https://doi.org/10.1002/2015GL065565
dc.identifier.citedreferenceClaudepierre, S. G., Elkington, S. R., & Wiltberger, M. ( 2008 ). Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause. Journal of Geophysical Research, 113, A05218. https://doi.org/10.1029/2007JA012890
dc.identifier.citedreferenceClaudepierre, S. G., Hudson, M. K., Lotko, W., Lyon, J. G., & Denton, R. E. ( 2010 ). Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations. Journal of Geophysical Research, 115, A11202. https://doi.org/10.1029/2010JA015399
dc.identifier.citedreferenceDouma, E., Rodger, C. J., Blum, L. W., & Clilverd, M. A. ( 2017 ). Occurrence characteristics of relativistic electron microbursts from SAMPEX observations. Journal of Geophysical Research: Space Physics, 122, 8096 – 8107. https://doi.org/10.1002/2017JA024067
dc.identifier.citedreferenceElkington, S. R., Hudson, M. K., & Chan, A. A. ( 2003 ). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. Journal of Geophysical Research, 108 ( A3 ), 1116. https://doi.org/10.1029/2001JA009202
dc.identifier.citedreferenceEngebretson, M. J., Posch, J. L., Braun, D. J., Li, W., Ma, Q., Kellerman, A. C., Huang, C.‐L., Kanekal, S. G., Kletzing, C. A., Wygant, J. R., Spence, H. E., Baker, D. N., Fennell, J. F., Angelopoulos, V., Singer, H. J., Lessard, M. R., Horne, R. B., Raita, T., Shiokawa, K., Rakhmatulin, R., Dmitriev, E., & Ermakova, E. ( 2018 ). EMIC wave events during the four GEM QARBM challenge intervals. Journal of Geophysical Research: Space Physics, 123, 6394 – 6423. https://doi.org/10.1029/2018JA025505
dc.identifier.citedreferenceFoster, J. C., Erickson, P. J., Baker, D. N., Claudepierre, S. G., Kletzing, C. A., Kurth, W., Reeves, G. D., Thaller, S. A., Spence, H. E., Shprits, Y. Y., & Wygant, J. R. ( 2014 ). Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations. Geophysical Research Letters, 41, 20 – 25. https://doi.org/10.1002/2013GL058438
dc.identifier.citedreferenceFoster, J. C., Wygant, J. R., Hudson, M. K., Boyd, A. J., Baker, D. N., Erickson, P. J., & Spence, H. E. ( 2015 ). Shock‐induced prompt relativistic electron acceleration in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 120, 1661 – 1674. https://doi.org/10.1002/2014JA020642
dc.identifier.citedreferenceGreen, J. C., Likar, J., & Shprits, Y. ( 2017 ). Impact of space weather on the satellite industry. Space Weather, 15, 804 – 818. https://doi.org/10.1002/2017SW001646
dc.identifier.citedreferenceHartinger, M. D., Turner, D. L., Plaschke, F., Angelopoulos, V., & Singer, H. ( 2013 ). The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. Journal of Geophysical Research: Space Physics, 118, 299 – 312. https://doi.org/10.1029/2012JA018349
dc.identifier.citedreferenceHartley, D. P., Kletzing, C. A., Santolík, O., Chen, L., & Horne, R. B. ( 2018 ). Statistical properties of plasmaspheric hiss from Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 123, 2605 – 2619. https://doi.org/10.1002/2017JA024593
dc.identifier.citedreferenceHietala, H., Kilpua, E. K. J., Turner, D. L., & Angelopoulos, V. ( 2014 ). Depleting effects of ICME‐driven sheath regions on the outer electron radiation belt. Geophysical Research Letters, 41, 2258 – 2265. https://doi.org/10.1002/2014GL059551
dc.identifier.citedreferenceHorne, R. B., & Thorne, R. M. ( 1998 ). Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophysical Research Letters, 25, 3011 – 3014. https://doi.org/10.1029/98GL01002
dc.identifier.citedreferenceHudson, M. K., Kress, B. T., Mueller, H.‐R., Zastrow, J. A., & Bernard Blake, J. ( 2008 ). Relationship of the Van Allen radiation belts to solar wind drivers. Journal of Atmospheric and Solar‐Terrestrial Physics, 70, 708 – 729. https://doi.org/10.1016/j.jastp.2007.11.003
dc.identifier.citedreferenceJaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’aniu, T. M., Ali, A. F., Elkington, S. R., Li, X., Kanekal, S. G., Fennell, J. F., Li, W., Thorne, R. M., Kletzing, C. A., Spence, H. E., & Reeves, G. D. ( 2015 ). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 120, 7240 – 7254. https://doi.org/10.1002/2015JA021234
dc.identifier.citedreferenceJian, L., Russell, C. T., Luhmann, J. G., & Skoug, R. M. ( 2006 ). Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Solar Physics, 239, 393 – 436. https://doi.org/10.1007/s11207-006-0133-2
dc.identifier.citedreferenceKanekal, S. G., Baker, D. N., Fennell, J. F., Jones, A., Schiller, Q., Richardson, I. G., Li, X., Turner, D. L., Califf, S., Claudepierre, S. G., Wilson, L. B., Jaynes, A. III, Blake, J. B., Reeves, G. D., Spence, H. E., Kletzing, C. A., & Wygant, J. R. ( 2016 ). Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock. Journal of Geophysical Research: Space Physics, 121, 7622 – 7635. https://doi.org/10.1002/2016JA022596
dc.identifier.citedreferenceKepko, L., & Spence, H. E. ( 2003 ). Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. Journal of Geophysical Research, 108 ( A6 ), 1257. https://doi.org/10.1029/2002JA009676
dc.identifier.citedreferenceKersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., & Grew, R. S. ( 2014 ). Electron losses from the radiation belts caused by EMIC waves. Journal of Geophysical Research: Space Physics, 119, 8820 – 8837. https://doi.org/10.1002/2014JA020366
dc.identifier.citedreferenceKessel, M. ( 2016 ). Things we do not yet understand about solar driving of the radiation belts. Journal of Geophysical Research: Space Physics, 121, 5549 – 5552. https://doi.org/10.1002/2016JA022472
dc.identifier.citedreferenceKilpua, E. K. J., Balogh, A., von Steiger, R., & Liu, Y. D. ( 2017 ). Geoeffective properties of solar transients and stream interaction regions. Space Science Reviews, 212, 1271 – 1314. https://doi.org/10.1007/s11214-017-0411-3
dc.identifier.citedreferenceKilpua, E. K. J., Hietala, H., Turner, D. L., Koskinen, H. E. J., Pulkkinen, T. I., Rodriguez, J. V., Reeves, G. D., Claudepierre, S. G., & Spence, H. E. ( 2015 ). Unraveling the drivers of the storm time radiation belt response. Geophysical Research Letters, 42, 3076 – 3084. https://doi.org/10.1002/2015GL063542
dc.identifier.citedreferenceKilpua, E., Koskinen, H. E. J., & Pulkkinen, T. I. ( 2017 ). Coronal mass ejections and their sheath regions in interplanetary space. Living Reviews in Solar Physics, 14, 5. https://doi.org/10.1007/s41116-017-0009-6
dc.identifier.citedreferenceKilpua, E. K. J., Lumme, E., Andreeova, K., Isavnin, A., & Koskinen, H. E. J. ( 2015 ). Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995‐2013). Journal of Geophysical Research: Space Physics, 120, 4112 – 4125. https://doi.org/10.1002/2015JA021138
dc.identifier.citedreferenceKim, H.‐J., & Chan, A. A. ( 1997 ). Fully adiabatic changes in storm time relativistic electron fluxes. Journal of Geophysical Research, 102, 22,107 – 22,116. https://doi.org/10.1029/97JA01814
dc.identifier.citedreferenceKletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J., Crawford, D., Dolan, J. S., Dvorsky, R., Hospodarsky, G. B., Howard, J., Jordanova, V., Johnson, R. A., Kirchner, D. L., Mokrzycki, B., Needell, G., Odom, J., Mark, D., Pfaff, R., Phillips, J. R., Piker, C. W., Remington, S. L., Rowland, D., Santolik, O., Schnurr, R., Sheppard, D., Smith, C. W., Thorne, R. M., & Tyler, J. ( 2013 ). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 179, 127 – 181. https://doi.org/10.1007/s11214-013-9993-6
dc.identifier.citedreferenceLam, M. M., Horne, R. B., Meredith, N. P., Glauert, S. A., Moffat‐Griffin, T., & Green, J. C. ( 2010 ). Origin of energetic electron precipitation >30 keV into the atmosphere. Journal of Geophysical Research, 115, A00F08. https://doi.org/10.1029/2009JA014619
dc.identifier.citedreferenceLi, X., Baker, D. N., Temerin, M., Cayton, T. E., Reeves, E. G. D., Christensen, R. A., Blake, J. B., Looper, M. D., Nakamura, R., & Kanekal, S. G. ( 1997 ). Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm. Journal of Geophysical Research, 102, 14,123 – 14,140. https://doi.org/10.1029/97JA01101
dc.identifier.citedreferenceLi, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N., Spence, H. E., Reeves, G. D., Kanekal, S. G., Green, J. C., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Blake, J. B., Fennell, J. F., & Claudepierre, S. G. ( 2014 ). Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 119, 4681 – 4693. https://doi.org/10.1002/2014JA019945
dc.identifier.citedreferenceLiu, S., Xiao, F., Yang, C., He, Y., Zhou, Q., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Funsten, H. O., Blake, J. B., Baker, D. N., & Wygant, J. R. ( 2015 ). Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms. Journal of Geophysical Research: Space Physics, 120, 938 – 948. https://doi.org/10.1002/2014JA020781
dc.identifier.citedreferenceLugaz, N., Farrugia, C. J., Smith, C. W., & Paulson, K. ( 2015 ). Shocks inside CMEs: A survey of properties from 1997 to 2006. Journal of Geophysical Research: Space Physics, 120, 2409 – 2427. https://doi.org/10.1002/2014JA020848
dc.identifier.citedreferenceLugaz, N., Farrugia, C. J., Winslow, R. M., Al‐Haddad, N., Kilpua, E. K. J., & Riley, P. ( 2016 ). Factors affecting the geoeffectiveness of shocks and sheaths at 1 AU. Journal of Geophysical Research: Space Physics, 121, 10,861 – 10,879. https://doi.org/10.1002/2016JA023100
dc.identifier.citedreferenceMa, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Engebretson, M. J., Spence, H. E., Baker, D. N., Blake, J. B., Fennell, J. F., & Claudepierre, S. G. ( 2018 ). Quantitative evaluation of radial diffusion and local acceleration processes during GEM challenge events. Journal of Geophysical Research: Space Physics, 123, 1938 – 1952. https://doi.org/10.1002/2017JA025114
dc.identifier.citedreferenceMann, I. R., Ozeke, L. G., Murphy, K. R., Claudepierre, S. G., Turner, D. L., Baker, D. N., Rae, I. J., Kale, A., Milling, D. K., Boyd, A. J., Spence, H. E., Reeves, G. D., Singer, H. J., Dimitrakoudis, S., Daglis, I. A., & Honary, F. ( 2016 ). Explaining the dynamics of the ultra‐relativistic third Van Allen radiation belt. Nature Physics, 12, 978 – 983. https://doi.org/10.1038/nphys3799
dc.identifier.citedreferenceMauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. ( 2013 ). Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Science Reviews, 179, 3 – 27. https://doi.org/10.1007/s11214-012-9908-y
dc.identifier.citedreferenceMayaud, P. ( 1980 ). Derivation, meaning, and use of geomagnetic indices, Geophysical Monograph, vol.  22. Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceMeredith, N. P., Horne, R. B., Glauert, S. A., Thorne, R. M., Summers, D., Albert, J. M., & Anderson, R. R. ( 2006 ). Energetic outer zone electron loss timescales during low geomagnetic activity. Journal of Geophysical Research, 111, A05212. https://doi.org/10.1029/2005JA011516
dc.identifier.citedreferenceMeredith, N. P., Horne, R. B., Iles, R. H. A., Thorne, R. M., Heynderickx, D., & Anderson, R. R. ( 2002 ). Outer zone relativistic electron acceleration associated with substorm‐enhanced whistler mode chorus. Journal of Geophysical Research, 107 ( A7 ), 1144. https://doi.org/10.1029/2001JA900146
dc.identifier.citedreferenceMeredith, N. P., Thorne, R. M., Horne, R. B., Summers, D., Fraser, B. J., & Anderson, R. R. ( 2003 ). Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. Journal of Geophysical Research, 108 ( A6 ), 1250. https://doi.org/10.1029/2002JA009700
dc.identifier.citedreferenceMiyoshi, Y., Kataoka, R., Kasahara, Y., Kumamoto, A., Nagai, T., & Thomsen, M. F. ( 2013 ). High‐speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves. Geophysical Research Letters, 40, 4520 – 4525. https://doi.org/10.1002/grl.50916
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.