Show simple item record

Coevolutionary dynamics shape the structure of bacteria‐phage infection networks

dc.contributor.authorFortuna, Miguel A.
dc.contributor.authorBarbour, Matthew A.
dc.contributor.authorZaman, Luis
dc.contributor.authorHall, Alex R.
dc.contributor.authorBuckling, Angus
dc.contributor.authorBascompte, Jordi
dc.date.accessioned2019-05-31T18:27:14Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationFortuna, Miguel A.; Barbour, Matthew A.; Zaman, Luis; Hall, Alex R.; Buckling, Angus; Bascompte, Jordi (2019). "Coevolutionary dynamics shape the structure of bacteria‐phage infection networks." Evolution 73(5): 1001-1011.
dc.identifier.issn0014-3820
dc.identifier.issn1558-5646
dc.identifier.urihttps://hdl.handle.net/2027.42/149309
dc.description.abstractCoevolution—reciprocal evolutionary change among interacting species driven by natural selection—is thought to be an important force in shaping biodiversity. This ongoing process takes place within tangled networks of species interactions. In microbial communities, evolutionary change between hosts and parasites occurs at the same time scale as ecological change. Yet, we still lack experimental evidence of the role of coevolution in driving changes in the structure of such species interaction networks. Filling this gap is important because network structure influences community persistence through indirect effects. Here, we quantified experimentally to what extent coevolutionary dynamics lead to contrasting patterns in the architecture of bacteria–phage infection networks. Specifically, we look at the tendency of these networks to be organized in a nested pattern by which the more specialist phages tend to infect only a proper subset of those bacteria infected by the most generalist phages. We found that interactions between coevolving bacteria and phages become less nested over time under fluctuating dynamics, and more nested under arms race dynamics. Moreover, when coevolution results in high average infectivity, phages and bacteria differ more from each other over time under arms race dynamics than under fluctuating dynamics. The tradeoff between the fitness benefits of evolving resistance/infectivity traits and the costs of maintaining them might explain these differences in network structure. Our study shows that the interaction pattern between bacteria and phages at the community level depends on the way coevolution unfolds.
dc.publisherR Foundation for Statistical Computing
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAntagonistic interactions
dc.subject.othercommunity structure
dc.subject.otherspecialization
dc.subject.otherresistance
dc.subject.otherhost range
dc.subject.otherecological networks
dc.titleCoevolutionary dynamics shape the structure of bacteria‐phage infection networks
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149309/1/evo13731_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149309/2/evo13731.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149309/3/evo13731-sup-0001-TableS1.pdf
dc.identifier.doi10.1111/evo.13731
dc.identifier.sourceEvolution
dc.identifier.citedreferenceLopez‐Pascua, L., M. A. Brockhurst, and A. Buckling. 2009. Antagonistic coevolution across productivity gradients: an experimental test of the effects of dispersal. J. Evol. Biol. 23: 207 – 211.
dc.identifier.citedreferenceBrockhurst, M. A., A. D. Morgan, P. B. Rainey, and A. Buckling. 2003. Population mixing accelerates coevolution. Ecol. Lett. 11: 975 – 979.
dc.identifier.citedreferenceBuckling, A., and P. B. Rainey. 2002. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. R. Soc. Lond. B 269: 931 – 936.
dc.identifier.citedreferenceFlores, C. O., J. R. Meyer, S. Valverde, L. Farr, and J. S. Weitz. 2011. Statistical structure of host‐phage interactions. Proc. Natl. Acad. Sci. USA 108: E288 – E297.
dc.identifier.citedreferenceForde, S. E., J. N. Thompson, and B. J. M. Bohannan. 2004. Adaptation varies through space and time in a coevolving host‐parasitoid interaction. Nature 431: 841 – 844.
dc.identifier.citedreferenceForde, S. E., J. N. Thompson, R. D. Holt, and B. J. M. Bohannan. 2008. Coevolution drives temporal changes in fitness and diversity across environments in a bacteria–bacteriophage interaction. Evolution 62: 1830 – 1839.
dc.identifier.citedreferenceGuimarães, P. R. Jr, M. M. Pires, P. Jordano, J. Bascompte, and J. N. Thompson. 2017. Indirect effects drive coevolution in mutualistic networks. Nature 550: 511 – 514.
dc.identifier.citedreferenceGurney, J., L. Aldakak, A. Betts, C. Gougat‐Barbera, T. Poisot, O. Kaltz, and M. E. Hochberg. 2017. Network structure and local adaptation in co‐evolving bacteria‐phage interactions. Mol. Ecol. 26: 1764 – 1777.
dc.identifier.citedreferenceHall, A. R., P. D. Scanlan, A. D. Morgan, and A. Buckling. 2011. Host–parasite coevolutionary arms race give way to fluctuating selection. Ecol. Lett. 14: 635 – 642.
dc.identifier.citedreferenceHochberg, M. E., and M. van Baalen. 1998. Antagonistic coevolution over productivity gradients. Am. Nat. 152: 620 – 634.
dc.identifier.citedreferenceKoskella, B., D. M. Lin, A. Buckling, and J. N. Thompson. 2012. The costs of evolving resistance in heterogeneous parasite environments. Proc. R. Soc. Lond. B 279: 1896 – 1903.
dc.identifier.citedreferenceKoskella, B., and M. A. Brockhurst. 2014. Bacteria‐phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38: 916 – 931.
dc.identifier.citedreferenceLeggett, H. C., A. Buckling, G. H. Long, and M. Boots. 2013. Generalism and the evolution of parasite virulence. Trends Ecol. Evol. 28: 592 – 596.
dc.identifier.citedreferenceLenski, R. E. 1988. Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425 – 432.
dc.identifier.citedreferenceLevine, J. M., J. Bascompte, P. Adler, and S. Allesina. 2017. Beyond pairwise mechanisms of species coexistence in complex communitites. Nature 546: 56 – 64.
dc.identifier.citedreferenceLopez‐Pascua, L., and A. Buckling. 2008. Increasing productivity accelerates host–parasite coevolution. J. Evol. Biol. 21: 853 – 860.
dc.identifier.citedreferenceLopez‐Pascua, L., A. R. Hall, A. Best, A. D. Morgan, M. Boots, and A. Buckling. 2014. Higher resources decrease fluctuating selection during host–parasite coevolution. Ecol. Lett. 17: 1380 – 1388.
dc.identifier.citedreferenceMeyer, J. R., D. T. Dobias, J. S. Weitz, J. E. Barrick, R. T. Quick, and R. E. Lenski. 2012. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335: 428 – 432.
dc.identifier.citedreferenceMorgan, A. D., M. B. Bonsall, and A. Buckling. 2010. Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Evolution 64: 2980 – 2987.
dc.identifier.citedreferenceNuismer, S. L., P. Jordano, and J. Bascompte. 2013. Coevolution and the architecture of mutualistic networks. Evolution 67: 338 – 354.
dc.identifier.citedreferencePoisot, T., G. Lepennetier, E. Martinez, J. Ramsayer, and M. E. Hochberg. 2011. Resource availability affects the structure of a natural bacteria‐bacteriophage community. Biol. Lett. 7: 201 – 204.
dc.identifier.citedreferenceR Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferenceScanlan, P. D., A. R. Hall, L. Lopez‐Pascua, and A. Buckling. 2011. Genetic basis of infectivity evolution in a bacteriophage. Mol. Ecol. 20: 981 – 989.
dc.identifier.citedreferenceScanlan, P. D., A. R. Hall, G. Blackshields, V. P. Friman, M. R. Jr, Davis, J. B. Goldberg, and A. Buckling. 2015. Coevolution with bacteriophages drives genome‐wide host evolution and constrains the acquisition of abiotic‐beneficial mutations. Mol. Biol. Evol. 32: 1425 – 1435.
dc.identifier.citedreferenceThompson, J. N. 2005. The geographic mosaic of coevolution. Univ. of Chicago Press. Chicago, IL.
dc.identifier.citedreferenceWeitz, J. S., T. Poisot, J. R. Meyer, C. O. Flores, S. Valverde, M. B. Sullivan, and M. E. Hochberg. 2013. Phage–bacteria infection networks. Trends Microbiol. 21: 82 – 91.
dc.identifier.citedreferenceWoolhouse, M. E. J., L. H. Taylor, and D. T. Haydon. 2001. Population biology of multihost pathogens. Science 292: 1109 – 1112.
dc.identifier.citedreferenceAlmeida‐Neto, M., P. Guimarães, Jr, P. R. Guimarães, R. D. Loyola, and W. Ulrich. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117: 1227 – 1239.
dc.identifier.citedreferenceAshby, B., and M. Boots. 2017. Multi‐mode fluctuating selection in host–parasite coevolution. Ecol. Lett. 20: 357 – 365.
dc.identifier.citedreferenceBairey, E., E. D. Kelsic, and R. Kishony. 2016. High‐order species interactions shape ecosystem diversity. Nat. Commun. 7: 12285.
dc.identifier.citedreferenceBascompte, J., P. Jordano, C. J. Melián, and J. M. Olesen. 2003. The nested assembly of plant‐animal mutualistic networks. Proc. Natl. Acad. Sci. USA 100: 9383 – 9387.
dc.identifier.citedreferenceBastolla, U., M. A. Fortuna, A. Pascual‐García, A. Ferrera, L. Bartolo, and J. Bascompte. 2009. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458: 1018 – 1020.
dc.identifier.citedreferenceBaselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19: 134 – 143.
dc.identifier.citedreferenceBeckett, S. J., and H. T. P. Williams. 2013. Coevolutionary diversification creates nested‐modular structure in phage‐bacteria interaction networks. Interface Focus 3: 20130033.
dc.identifier.citedreferenceBest, A., B. Ashby, A. White, R. Bowers, A. Buckling, B. Koskella, and M. Boots. 2017. Host‐parasite fluctuating selection in the absence of specificity. Proc. R. Soc. Lond. B 284: 20171615.
dc.identifier.citedreferenceBetts, A., O. Kaltz, and M. E. Hochberg. 2014. Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. Proc. Natl. Acad. Sci. USA 111: 11109 – 11114.
dc.identifier.citedreferenceBetts, A., D. R. Gifford, R. C. MacLean, and K. C. King. 2016. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria‐phage system. Evolution 70: 969 – 978.
dc.identifier.citedreferenceBohannan, B. J. M., and R. E. Lenski. 1997. Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78: 2303 – 2315.
dc.identifier.citedreferenceBohannan, B. J. M., and R. E. Lenski. 2000. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3: 362 – 377.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.