Show simple item record

Response of the Geospace System to the Solar Wind Dynamic Pressure Decrease on 11 June 2017: Numerical Models and Observations

dc.contributor.authorOzturk, Dogacan S.
dc.contributor.authorZou, Shasha
dc.contributor.authorSlavin, James A.
dc.contributor.authorRidley, Aaron J.
dc.date.accessioned2019-05-31T18:27:20Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationOzturk, Dogacan S.; Zou, Shasha; Slavin, James A.; Ridley, Aaron J. (2019). "Response of the Geospace System to the Solar Wind Dynamic Pressure Decrease on 11 June 2017: Numerical Models and Observations." Journal of Geophysical Research: Space Physics 124(4): 2613-2627.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/149314
dc.description.abstractOn 11 June 2017, a sudden solar wind dynamic pressure decrease occurred at 1437 UT according to the OMNI solar wind data. The solar wind velocity did not change significantly, while the density dropped from 42 to 10 cm−3 in a minute. The interplanetary magnetic field BZ was weakly northward during the event, while the BY changed from positive to negative. Using the University of Michigan Block Adaptive Tree Solarwind Roe Upwind Scheme global magnetohydrodynamic code, the global responses to the decrease in the solar wind dynamic pressure were studied. The simulation revealed that the magnetospheric expansion consisted of two phases similar to the responses during magnetospheric compression, namely, a negative preliminary impulse and a negative main impulse phase. The simulated plasma flow and magnetic fields reasonably reproduced the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric Multiscale spacecraft in situ observations. Two separate pairs of dawn‐dusk vortices formed during the expansion of the magnetosphere, leading to two separate pairs of field‐aligned current cells. The effects of the flow and auroral precipitation on the ionosphere‐thermosphere (I‐T) system were investigated using the Global Ionosphere Thermosphere Model driven by simulated ionospheric electrodynamics. The perturbations in the convection electric fields caused enhancements in the ion and electron temperatures. This study shows that, like the well‐studied sudden solar wind pressure increases, sudden pressure decreases can have large impacts in the coupled I‐T system. In addition, the responses of the I‐T system depend on the initial convection flows and field‐aligned current profiles before the solar wind pressure perturbations.Key PointsThe decrease in the solar wind dynamic pressure led to two separate pairs of oppositely rotating vortices in the dawn and duskFACs accompanied each magnetospheric vortex and altered the ionosphere convection patternsJoule heating increased in the regions sandwiched by the perturbation FACs, leading to increased ion temperatures
dc.publisherAmerican Geophysical Union
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMagnetosphere‐Ionosphere‐Thermosphere Coupling
dc.subject.otherMagnetospheric expansion
dc.subject.otherSolar wind dynamic pressure drop
dc.titleResponse of the Geospace System to the Solar Wind Dynamic Pressure Decrease on 11 June 2017: Numerical Models and Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149314/1/jgra54868.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149314/2/jgra54868_am.pdf
dc.identifier.doi10.1029/2018JA026315
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceThayer, J. P., Vickrey, J. F., Heelis, R. A., & Gary, J. B. ( 1995 ). Interpretation and modeling of high‐latitude electromagnetic energy flux. Journal of Geophysical Research, 100, 19,715 – 19,728.
dc.identifier.citedreferenceOzturk, D. S., Zou, S., & Slavin, J. A. ( 2017 ). IMF by effects on ground magnetometer response to increased solar wind dynamic pressure derived from global MHD simulations. Journal of Geophysical Research: Space Physics, 122, 5028 – 5042. https://doi.org/10.1002/2017JA023903
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., & DeZeeuw, D. L. ( 2004 ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22, 567 – 584.
dc.identifier.citedreferenceSamsonov, A. A., Němeček, Z., & Šafránková, J. ( 2006 ). Numerical MHD modeling of propagation of interplanetary shock through the magnetosheath. Journal of Geophysical Research, 111, A08210. https://doi.org/10.1029/2005JA011537
dc.identifier.citedreferenceSamsonov, A. A., & Sibeck, D. G. ( 2013 ). Large‐scale flow vortices following a magnetospheric sudden impulse. Journal of Geophysical Research: Space Physics, 188, 3055 – 3064. https://doi.org/10.1002/jgra.50329
dc.identifier.citedreferenceSamsonov, A. A., Sibeck, D. G., & Yu, Y. ( 2010 ). Transient changes in magnetospheric‐ionospheric currents caused by the passage of an interplanetary shock: Northward interplanetary magnetic field case. Journal of Geophysical Research, 115, A05207. https://doi.org/10.1029/2009JA014751
dc.identifier.citedreferenceSato, N., Murata, Y., Yamagishi, H., Yukimatu, A. S., Kikuchi, M., Watanabe, M., Makita, K., Yang, H., Liu, R., & Rich, F. J. ( 2001 ). Enhancement of optical aurora triggered by the solar wind negative pressure impulse. Geophysical Research Letters, 28 ( 1 ), 127 – 130.
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics and chemistry. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceShi, Q. Q., Hartinger, M. D., Angelopoulos, V., Tian, A. M., Fu, S. Y., Zong, Q.‐G., Weygand, J. M., Raeder, J., Pu, Z. Y., Zhou, X. Z., Dunlop, M. W., Liu, W. L., Zhang, H., Yao, Z. H., & Shen, X. C. ( 2013 ). Solar wind pressure pulse‐driven magnetospheric vortices and their global consequences. Journal of Geophysical Research: Space Physics, 119, 4274 – 4280. https://doi.org/10.1002/2013JA019551
dc.identifier.citedreferenceSibeck, D. G. ( 1990 ). A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations. Journal of Geophysical Research, 95, 3755 – 3771.
dc.identifier.citedreferenceSun, T. R., Wang, C., Zhang, J. J., Pilipenko, V. A., Wang, Y., & Wang, J. Y. ( 2014 ). The chain response of the magnetospheric and ground magnetic field to interplanetary shocks. Journal of Geophysical Research: Space Physics, 120, 157 – 165. https://doi.org/10.1002/2014JA020754
dc.identifier.citedreferenceTakeuchi, T., Araki, T., Luehr, H., Rasmussen, O., Watermann, J., Milling, D. K., Mann, I. R., Yumoto, K., Shiokawa, K., & Nagai, T. ( 2000 ). Geomagnetic negative sudden impulse due to a magnetic cloud observed on May 13, 1995. Journal of Geophysical Research, 105 ( A8 ), 18,835 – 18,846.
dc.identifier.citedreferenceTakeuchi, T., Araki, T., Viljanen, A., & Watermann, J. ( 2002 ). Geomagnetic negative sudden impulses: Interplanetary causes and polarization distribution. Journal of Geophysical Research, 107 ( A7 ), 1096.
dc.identifier.citedreferenceTamao, T. ( 1965 ). Transmission and coupling resonance of hydromagnetic disturbances in the non‐uniform Earth’s magnetosphere.
dc.identifier.citedreferenceTian, A. M., Shen, X. C., Shi, Q. Q., Tang, B. B., Nowada, M., Zong, Q. G., & Fu, S. Y. ( 2016 ). Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations. Journal of Geophysical Research: Space Physics, 121, 10,813 – 10,830. https://doi.org/10.1002/2016JA022459
dc.identifier.citedreferenceToffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. ( 2003 ). Inner magnetospheric modeling with the Rice Convection Model. Space Science Reviews, 107, 175 – 196.
dc.identifier.citedreferenceToth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., DeZeeuw, D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., Oehmke, R. C., Powell, K. G., Ridley, A. J., Roussev, I. I., Stout, Q. F., Volberg, O., Wolf, R. A., Sazykin, S., Chan, A., & Yu, B. ( 2005 ). Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Predicting surface geomagnetic variations using ionospheric electrodynamic models. Journal of Geophysical Research, 110, A12307. https://doi.org/10.1029/2005JA011270
dc.identifier.citedreferenceYu, Y., & Ridley, A. J. ( 2009 ). The response of the magnetosphere‐ionosphere system to a sudden dynamic pressure enhancement under southward IMF conditions. Annales Geophysicae, 27, 4391 – 4407.
dc.identifier.citedreferenceYu., Y., & Ridley, A. J. ( 2011 ). Understanding the response of the ionosphere‐magnetosphere system to sudden solar wind density increases. Journal of Geophysical Research, 116, A04210. https://doi.org/10.1029/2010JA015871
dc.identifier.citedreferenceZhang, X. Y., Zong, Q. G., Wang, Y. F., Zhang, H., Xie, L., Fu, S. Y., Yuan, C. J., Yue, C., Yang, B., & Pu, Z. Y. ( 2010 ). ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. Journal of Computational Physics, 115, A10221. https://doi.org/10.1029/2009JA015016
dc.identifier.citedreferenceZhao, H. Y., Shen, X. C., Tang, B. B., Tian, A. M., Shi, Q. Q., Weygand, J. M., Yao, Z. H., Zong, Q.‐G., Fu, S. Y., Yao, S. T., Xiao, T., & Pu, Z. Y. ( 2016 ). Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease. Journal of Geophysical Research: Space Physics, 121, 1071 – 1077. https://doi.org/10.1002/2015JA021646
dc.identifier.citedreferenceZhou, X., & Tsuratani, B. T. ( 1999 ). Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks). Geophysical Research Letters, 26, 1097 – 1100.
dc.identifier.citedreferenceAraki, T. ( 1994a ). Global structure of geomagnetic sudden commencement. Planetary Space Science, 25, 373 – 384.
dc.identifier.citedreferenceAraki, T. ( 1994b ). A physical model of geomagnetic sudden commencement. In M. J. Engebreston, K. Takahashi, & M. Scholer (Eds.), Solar wind sources of magnetospheric ultra‐low‐frequency waves (Vol.  81, pp. 183 – 200 ). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceAraki, T., & Nagano, H. ( 1988 ). Geomagnetic response to sudden expansion of the magnetosphere. Journal of Geophysical Research, 93, 3983 – 3988.
dc.identifier.citedreferenceBelakhovsky, V. B., & Vorobjev, V. G. ( 2016 ). Response of the night aurora to a negative sudden impulse. Geomagnetism and Aeronomy, 56, 694 – 705.
dc.identifier.citedreferenceFujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., Hosokawa, K., & Itonaga, M. ( 2003a ). A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field‐aligned current associated with the preliminary impulse. Journal of Geophysical Research, 108, 1416.
dc.identifier.citedreferenceFujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., & Itonaga, M. ( 2003b ). A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse. Journal of Geophysical Research, 108, 1417.
dc.identifier.citedreferenceFujita, S., Tanaka, T., Kikuchi, T., & Tsunomura, S. ( 2004 ). A numerical simulation of a negative sudden impulse. Earth Planets Space, 56, 463 – 472.
dc.identifier.citedreferenceFujita, S., Tanaka, T., & Motoba, T. ( 2005 ). A numerical simulation of the geomagnetic sudden commencement: 3. A sudden commencement in the magnetosphere‐ionosphere compound system. Journal of Geophysical Research, 110, A11203. https://doi.org/10.1029/2005JA011055
dc.identifier.citedreferenceFujita, S., Yamagishi, H., Murata, K. T., Den, M., & Tanaka, T. ( 2012 ). A numerical simulation of a negative solar wind impulse: Revisited. Journal of Geophysical Research, 117, A09219. https://doi.org/10.1029/2012JA017526
dc.identifier.citedreferenceGarcia, K. S., & Hughes, W. J. ( 2007 ). Finding the Lyon‐Fedder‐Mobarry magnetopause: A statistical perspective. Journal of Geophysical Research, 112, A06229. https://doi.org/10.1029/2006JA012039
dc.identifier.citedreferenceKataoka, R., Fukunishi, H., Fujita, S., Tanaka, T., & Itonaga, M. ( 2004 ). Transient response of the Earth’s magnetosphere to a localized density pulse in the solar wind: Simulation of traveling convection vortices. Journal of Geophysical Research, 109, A03204. https://doi.org/10.1029/2003JA010287
dc.identifier.citedreferenceKeller, K. A., Hesse, M., Kuznetsova, M., Rastätter, L., Moretto, T., Gombosi, T. I., & DeZeeuw, D. L. ( 2002 ). Global MHD. Modeling of the impact of a solar wind pressure change. Journal of Geophysical Research, 107 ( A7 ), 1126.
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1991 ). Ionospheric traveling convection vortex generation by solar wind buffeting of the magnetosphere. Journal of Geophysical Research, 96, 1661 – 1667.
dc.identifier.citedreferenceLiou, K. ( 2007 ). Large, abrupt pressure decreases as a substorm onset trigger. Geophysical Research Letters, 34, L14107. https://doi.org/10.1029/2007GL029909
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., Ruohoniemi, J. M., Carbary, J. F., Liou, K., Skura, J. P., Meng, C. I., Deehr, C., Wilkinson, D., & Rich, F. J. ( 2002 ). Ovation: Oval variation, assessment, tracking, intensity and online nowcasting. Annales Geophysicae, 20, 1039 – 1047.
dc.identifier.citedreferenceOzturk, D. S., Zou, S., Ridley, A. J., & Slavin, J. A. ( 2018 ). Modeling study of the geospace system response to the solar wind dynamic pressure enhancement on 17 March 2015. Journal of Geophysical Research: Space Physics, 123, 2974 – 2989. https://doi.org/10.1002/2017JA025099
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.