An integrative view of mammalian seasonal neuroendocrinology
dc.contributor.author | Dardente, Hugues | |
dc.contributor.author | Wood, Shona | |
dc.contributor.author | Ebling, Francis | |
dc.contributor.author | Sáenz De Miera, Cristina | |
dc.date.accessioned | 2019-05-31T18:27:22Z | |
dc.date.available | 2020-07-01T17:47:46Z | en |
dc.date.issued | 2019-05 | |
dc.identifier.citation | Dardente, Hugues; Wood, Shona; Ebling, Francis; Sáenz De Miera, Cristina (2019). "An integrative view of mammalian seasonal neuroendocrinology." Journal of Neuroendocrinology 31(5): n/a-n/a. | |
dc.identifier.issn | 0953-8194 | |
dc.identifier.issn | 1365-2826 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/149315 | |
dc.description.abstract | Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid‐stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF‐amide neuropeptides kisspeptin and RFRP3 (RF‐amide related peptide 3), are plausible relays between TH and the gonadotrophin‐releasing hormone‐pituitary‐gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research. | |
dc.publisher | Springer‐Verlag | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | seasonal remodelling | |
dc.subject.other | thyroid hormone | |
dc.subject.other | melatonin | |
dc.subject.other | tanycytes | |
dc.subject.other | photoperiod | |
dc.subject.other | pars tuberalis | |
dc.title | An integrative view of mammalian seasonal neuroendocrinology | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Neurosciences | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/149315/1/jne12729_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/149315/2/jne12729.pdf | |
dc.identifier.doi | 10.1111/jne.12729 | |
dc.identifier.source | Journal of Neuroendocrinology | |
dc.identifier.citedreference | Rousseau K, Atcha Z, Cagampang FRA, et al. Photoperiodic regulation of leptin resistance in the seasonally breeding Siberian hamster ( Phodopus sungorus ). Endocrinology. 2002; 143: 3083 ‐ 3095. | |
dc.identifier.citedreference | Thorson JF, Prezotto LD, Cardoso RC, et al. Hypothalamic Distribution, Adenohypophyseal Receptor Expression, and Ligand Functionality of RFamide‐Related Peptide 3 in the Mare During the Breeding and Nonbreeding Seasons. Biol Reprod. 2014; 90. Article 28. | |
dc.identifier.citedreference | Clarke IJ, Smith JT, Henry BA, et al. Gonadotropin‐inhibitory hormone is a hypothalamic peptide that provides a molecular switch between reproduction and feeding. Neuroendocrinology. 2012; 95: 305 ‐ 316. | |
dc.identifier.citedreference | Jaroslawska J, Chabowska‐Kita A, Kaczmarek MM, et al. Npvf: hypothalamic biomarker of ambient temperature independent of nutritional status. PLoS Genet. 2015; 11: 1 ‐ 23. | |
dc.identifier.citedreference | Henson JR, Carter SN, Freeman DA. Exogenous T3 elicits long day‐like alterations in testis size and the RFamides Kisspeptin and gonadotropin‐inhibitory hormone in short‐day Siberian hamsters. J Biol Rhythms. 2013; 28: 193 ‐ 200. | |
dc.identifier.citedreference | Cravo RM, Margatho LO, Osborne‐Lawrence S, et al. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience. 2011; 173: 37 ‐ 56. | |
dc.identifier.citedreference | Qiu J, Rivera HM, Bosch MA, et al. Estrogenic‐dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. Elife. 2018; 7: 1 ‐ 34. | |
dc.identifier.citedreference | Merkley CM, Coolen LM, Goodman RL, et al. Evidence for changes in numbers of synaptic inputs onto KNDy and GnRH neurones during the preovulatory LH surge in the ewe. J Neuroendocrinol. 2015; 27: 624 ‐ 635. | |
dc.identifier.citedreference | Poling MC, Kim J, Dhamija S, et al. Development, sex steroid regulation, and phenotypic characterization of RFamide‐related peptide (Rfrp) gene expression and RFamide receptors in the mouse hypothalamus. Endocrinology. 2012; 153: 1827 ‐ 1840. | |
dc.identifier.citedreference | Weems PW, Goodman RL, Lehman MN. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters. Front Neuroendocrinol. 2015; 37: 43 ‐ 51. | |
dc.identifier.citedreference | Moore AM, Coolen LM, Porter DT, et al. KNDy cells revisited. Endocrinology. 2018; 159: 3219 ‐ 3234. | |
dc.identifier.citedreference | Legan SJ, Karsch FJ, Foster DL. The endocrine control of seasonal reproductive function in the ewe: a marked change in response to the negative feedback action of estradiol on luteinizing hormone secretion. Endocrinology. 1977; 101: 818 ‐ 824. | |
dc.identifier.citedreference | Goodman RL, Bittman EL, Foster DL, et al. Alterations in the control of luteinizing hormone pulse frequency underlie the seasonal variation in estradiol negative feedback in the ewe. Biol Reprod. 1982; 27: 580 ‐ 589. | |
dc.identifier.citedreference | Ginther OJ, Gastal EL, Gastal MO, et al. Seasonal influence on equine follicle dynamics. Anim Reprod. 2004; 1: 31 ‐ 44. | |
dc.identifier.citedreference | Robinson JE, Follett BK. Photoperiodism in Japanese quail: the termination of seasonal breeding by photorefractoriness. Proc R Soc Lond B Biol Sci. 1982; 215: 95 ‐ 116. | |
dc.identifier.citedreference | Davis GJ, Meyer RK. Seasonal Variation in LH and FSH of bilaterally castrated snowshoe hares. Gen Comp Endocrinol. 1973; 20: 61 ‐ 68. | |
dc.identifier.citedreference | Smith JT. Sex steroid regulation of kisspeptin circuits. In: Kauffman AS, Smith JT, eds. Kisspeptin Signaling in Reproductive Biology. New York, NY: Springer; 2013: 275 ‐ 295. | |
dc.identifier.citedreference | Fitzgerald KT. The structure and function of the pars tuberalis of the vertebrate adenohypophysis. Gen Comp Endocrinol. 1979; 37: 383 ‐ 399. | |
dc.identifier.citedreference | Nakane Y, Ikegami K, Iigo M, et al. The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun. 2013; 4: 2108. | |
dc.identifier.citedreference | Fleming MS, Maugars G, Lafont A‐G, et al. Functional divergence of thyrotropin beta‐subunit paralogs gives new insights into salmon smoltification metamorphosis. Sci Rep. 2019; 9: 1 ‐ 15. | |
dc.identifier.citedreference | Lorgen M, Casadei E, Król E, et al. Functional divergence of type 2 deiodinase paralogs in the Atlantic salmon. Curr Biol. 2015; 25: 936 ‐ 941. | |
dc.identifier.citedreference | O’Brien CS, Bourdo R, Bradshaw WE, et al. Conservation of the photoperiodic neuroendocrine axis among vertebrates: evidence from the teleost fish, Gasterosteus aculeatus. Gen Comp Endocrinol. 2012; 178: 19 ‐ 27. | |
dc.identifier.citedreference | Kitano J, Lema SC, Luckenbach JA, et al. Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation. Curr Biol. 2010; 20: 2124 ‐ 2130. | |
dc.identifier.citedreference | Mure LS, Le HD, Benegiamo G, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018; 359: eaao0318. | |
dc.identifier.citedreference | Fan Z, Li W, Lee SR, et al. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS ONE. 2014; 9: e109755. | |
dc.identifier.citedreference | Hand LE, Saer BRC, Hui ST, et al. Induction of the metabolic regulator Txnip in fasting‐induced and natural torpor. Endocrinology. 2013; 154: 2081 ‐ 2091. | |
dc.identifier.citedreference | Helfer G, Barrett P, Morgan PJ. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals. J Neuroendocrinol. 2019; 31: e12680. | |
dc.identifier.citedreference | Hazlerigg DG, Loudon A. New insights into ancient seasonal life timers. Curr Biol. 2008; 18: R795 ‐ R804. | |
dc.identifier.citedreference | Dardente H, Hazlerigg DG, Ebling FJP. Thyroid hormone and seasonal rhythmicity. Front Endocrinol. 2014; 5: 19. | |
dc.identifier.citedreference | Nakane Y, Yoshimura T. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci. 2014; 8: 1 ‐ 7. | |
dc.identifier.citedreference | Wood S, Loudon ASI. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary. J Endocrinol. 2014; 222: R39 ‐ R59. | |
dc.identifier.citedreference | West AC, Wood SH. Seasonal physiology: making the future a thing of the past. Curr Opin Physiol. 2018; 5: 1 ‐ 8. | |
dc.identifier.citedreference | Hoffman RA, Reiter RJ. Pineal gland: influence on gonads of male hamsters. Science. 1965; 148: 1609 ‐ 1611. | |
dc.identifier.citedreference | Reiter RJ. Photoperiod: its importance as an impeller of pineal and seasonal reproductive rhythms. Int J Biometeorol. 1980; 24: 57 ‐ 63. | |
dc.identifier.citedreference | Woodfill CJI, Wayne NL, Moenter SM, et al. Photoperiodic synchronization of a circannual reproductive rhythm in sheep: identification of season‐specific time cues. Biol Reprod. 1994; 50: 965 ‐ 976. | |
dc.identifier.citedreference | Bittman EL, Dempsey RJ, Karsch FJ. Pineal melatonin secretion drives the reproductive response to daylength in the ewe. Endocrinology. 1983; 113: 2276 ‐ 2283. | |
dc.identifier.citedreference | Carter DS, Goldman BD. Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters ( Phodopus sungorus sungorus ): duration is the critical parameter. Endocrinology. 1983; 113: 1261 ‐ 1267. | |
dc.identifier.citedreference | Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms. 2001; 16: 283 ‐ 301. | |
dc.identifier.citedreference | Elliott JA. Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc. 1976; 35: 2339 ‐ 2346. | |
dc.identifier.citedreference | Brinklow BR, Loudon AS. Evidence for a circannual rhythm of reproduction and prolactin secretion in a seasonally breeding macropodid marsupial, the Bennett’s wallaby ( Macropus rufogriseus rufogriseus ). J Reprod Fertil. 1993; 98: 625 ‐ 630. | |
dc.identifier.citedreference | Follett BK, Nicholls TJ. Influences of thyroidectomy and thyroxine replacement on photoperiodically controlled reproduction in quail. J Endocrinol. 1985; 107: 211 ‐ 221. | |
dc.identifier.citedreference | Butler MP, Turner KW, Park JH, et al. Seasonal regulation of reproduction: altered role of melatonin under naturalistic conditions in hamsters. Proc Biol Sci. 2010; 277: 2867 ‐ 2874. | |
dc.identifier.citedreference | Wood S, Loudon A. The pars tuberalis: the site of the circannual clock in mammals? Gen Comp Endocrinol. 2018; 258: 222 ‐ 235. | |
dc.identifier.citedreference | Lincoln GA. A brief history of circannual time. J Neuroendocrinol. 2019; 31: e12694. | |
dc.identifier.citedreference | Kondo N, Sekijima T, Kondo J, et al. Circannual control of hibernation by HP complex in the brain. Cell. 2006; 125: 161 ‐ 172. | |
dc.identifier.citedreference | Sáenz de Miera C, Monecke S, Bartzen‐Sprauer J, et al. A circannual clock drives expression of genes central for seasonal reproduction. Curr Biol. 2014; 24: 1500 ‐ 1506. | |
dc.identifier.citedreference | Malpaux B, Robinson JE, Brown MB, et al. Reproductive refractoriness of the ewe to inductive photoperiod is not caused by inappropriate secretion of melatonin. Biol Reprod. 1987; 36: 1333 ‐ 1341. | |
dc.identifier.citedreference | Lincoln GA, Johnston JD, Andersson H, et al. Photorefractoriness in mammals: dissociating a seasonal timer from the Circadian‐based photoperiod response. Endocrinology. 2005; 146: 3782 ‐ 3790. | |
dc.identifier.citedreference | Zucker I. Pineal gland influences period of circannual rhythms of ground squirrels. Am J Physiol Regul Integr Comp Physiol. 1985; 249: R111 ‐ R115. | |
dc.identifier.citedreference | Masson‐Pévet M, Naimi F, Canguilhem B, et al. Are the annual reproductive and body‐weight rhythms in the male European hamster ( Cricetus cricetus ) dependent upon a photoperiodically entrained circannual clock? J Pineal Res. 1994; 17: 151 ‐ 163. | |
dc.identifier.citedreference | Monecke S, Sage‐Ciocca D, Wollnik F, et al. Photoperiod can entrain circannual rhythms in pinealectomizedEuropean hamsters. J Biol Rhythms. 2013; 28: 278 – 90. | |
dc.identifier.citedreference | Lincoln GA, Clarke IJ, Hut RA, et al. Characterizing a Mammalian circannual pacemaker. Science. 2006; 314: 1941 ‐ 1944. | |
dc.identifier.citedreference | Dardente H. Melatonin‐dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J Neuroendocrinol. 2012; 24: 249 ‐ 266. | |
dc.identifier.citedreference | Gwinner E. Circannual Rhythms. Berlin: Springer‐Verlag; 1986. | |
dc.identifier.citedreference | Gwinner E, Dittami J. Endogenous reproductive rhythms in a tropical bird. Science. 1990; 249: 906 ‐ 908. | |
dc.identifier.citedreference | Hoffmann K, Illnerova H, Vanecek J. Change in duration of the nighttime melatonin peak may be a signal driving photoperiodic responses in the Djungarian hamster ( Phodopus sungorus ). Neurosci Lett. 1986; 67: 68 ‐ 72. | |
dc.identifier.citedreference | Robinson JE, Karsch FJ. Photoperiodic history and a changing melatonin pattern daylength. J Reprod Fertil. 1987; 80: 159 ‐ 165. | |
dc.identifier.citedreference | Stokkan K‐A, Tyler NJC, Reiter RJ. The pineal gland signals autumn to reindeer ( Rangifer tarandus tarandus ) exposed to the continuous daylight of the Arctic summer. Can J Zool. 1994; 72: 904 ‐ 909. | |
dc.identifier.citedreference | Reierth E, Van’t Hof TJ, Stokkan K‐A. Seasonal and daily variations in plasma melatonin in the high‐arctic svalbard ptarmigan ( Lagopus mutus hyperboreus ). J Biol Rhythms. 1999; 14: 314 ‐ 319. | |
dc.identifier.citedreference | Stokkan K‐A, van Oort BEH, Tyler NJC, et al. Adaptations for life in the Arctic: evidence that melatonin rhythms in reindeer are not driven by a Circadian oscillator but remain acutely sensitive to environmental photoperiod. J Pineal Res. 2007; 43: 289 ‐ 293. | |
dc.identifier.citedreference | Strand JET, Aarseth JJ, Hanebrekke TL, et al. Keeping track of time under ice and snow in a sub‐arctic lake: plasma melatonin rhythms in Arctic charr overwintering under natural conditions. J Pineal Res. 2008; 44: 227 ‐ 233. | |
dc.identifier.citedreference | Stetson MH, Elliott JA, Goldman BD. Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal Djungarian hamsters ( Phodopus sungorus sungorus ). Biol Reprod. 1986; 34: 664 ‐ 669. | |
dc.identifier.citedreference | Foster DL. Mechanism for delay of first ovulation in lambs born in the wrong season (fall). Biol Reprod. 1981; 25: 85 ‐ 92. | |
dc.identifier.citedreference | Ebling FJP, Wood RI, Suttie JM, et al. Prenatal photoperiod influences neonatal prolactin secretion in sheep. Endocrinology. 1989; 125: 384 ‐ 391. | |
dc.identifier.citedreference | Horton TH, Stetson MH. Maternal transfer of photoperiodic information in rodents. Anim Reprod Sci. 1992; 30: 29 ‐ 44. | |
dc.identifier.citedreference | Sáenz de Miera C, Bothorel B, Jaeger C, et al. Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland. Proc Natl Acad Sci USA. 2017; 114: 8408 ‐ 8413. | |
dc.identifier.citedreference | Wood SH, Christian HC, Miedzinska K, et al. Binary switching of calendar cells in the pituitary defines the phase of the circannual cycle in mammals. Curr Biol. 2015; 25: 2652 ‐ 2662. | |
dc.identifier.citedreference | Sáenz de Miera C. Maternal photoperiodic programming enlightens the internal regulation of thyroid‐hormone deiodinases in tanycytes. J Neuroendocrinol. 2019; 31: e12679. | |
dc.identifier.citedreference | Morgan PJ, Barrett P, Howell HE, et al. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int. 1994; 24: 101 ‐ 146. | |
dc.identifier.citedreference | Klosen P, Bienvenu C, Demarteau O, et al. The mt1 melatonin receptor and RORbeta receptor are co‐localized in specific TSH‐immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem. 2002; 50: 1647 ‐ 1657. | |
dc.identifier.citedreference | Dardente H, Klosen P, Pévet P, et al. MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol. 2003; 15: 778 ‐ 786. | |
dc.identifier.citedreference | Johnston JD, Klosen P, Barrett P, et al. Regulation of MT melatonin receptor expression in the foetal rat pituitary. J Neuroendocrinol. 2006; 18: 50 ‐ 56. | |
dc.identifier.citedreference | Lincoln GA. Neuroendocrine regulation of seasonal gonadotrophin and prolactin rhythms: lessons from the Soay ram model. Reproduction. 2002; 59: 131 ‐ 147. | |
dc.identifier.citedreference | Curlewis JD. Seasonal prolactin secretion and its role in seasonal reproduction: a review. Reprod Fertil Dev. 1992; 4: 1 ‐ 23. | |
dc.identifier.citedreference | Lincoln GA, Clarke IJ. Photoperiodically‐induced cycles in the secretion of prolactin in hypothalamopituitary disconnected rams—evidence for translation of the melatonin signal in the pituitary‐gland. J Neuroendocrinol. 1994; 6: 251 ‐ 260. | |
dc.identifier.citedreference | Morgan PJ, Webster CA, Mercer JG, et al. The ovine pars tuberalis secretes a factor(s) that regulates gene expression in both lactotropic and nonlactotropic pituitary cells. Endocrinology. 1996; 137: 4018 ‐ 4026. | |
dc.identifier.citedreference | Stirland JA, Johnston JD, Cagampang FR, et al. Photoperiodic regulation of prolactin gene expression in the Syrian hamster by a pars tuberalis‐derived factor. J Neuroendocrinol. 2001; 13: 147 ‐ 157. | |
dc.identifier.citedreference | Morgan PJ, Williams LM. The pars tuberalis of the pituitary: a gateway for neuroendocrine output. Rev Reprod. 1996; 1: 153 ‐ 161. | |
dc.identifier.citedreference | Hazlerigg DG, Gonzalez‐Brito A, Lawson W, et al. Prolonged exposure to melatonin leads to time‐dependent sensitization of adenylate cyclase and down‐regulates melatonin receptors in pars tuberalis cells from ovine pituitary. Endocrinology. 1993; 132: 285 ‐ 292. | |
dc.identifier.citedreference | Dardente H. Does a melatonin‐dependent Circadian oscillator in the pars tuberalis drive prolactin seasonal rhythmicity? J Neuroendocrinol. 2007; 19: 657 ‐ 666. | |
dc.identifier.citedreference | Dupré SM, Burt DW, Talbot R, et al. Identification of melatonin‐regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control. Endocrinology. 2008; 149: 5527 ‐ 5539. | |
dc.identifier.citedreference | Fustin J, Dardente H, Wagner GC, et al. Egr1 involvement in evening gene regulation by melatonin. FASEB J. 2009; 23: 764 ‐ 773. | |
dc.identifier.citedreference | Unfried C, Ansari N, Yasuo S, et al. Impact of melatonin and molecular clockwork components on the expression of thyrotropin beta‐chain (Tshb) and the Tsh receptor in the mouse pars tuberalis. Endocrinology. 2009; 150: 4653 ‐ 4662. | |
dc.identifier.citedreference | West A, Dupré SM, Yu L, et al. Npas4 is activated by melatonin, and drives the clock gene Cry1 in the ovine pars tuberalis. Mol Endocrinol. 2013; 27: 979 ‐ 989. | |
dc.identifier.citedreference | Ray KP, Wallis M. Actions of dopamine on prolactin secretion and cyclic AMP metabolism in ovine pituitary cells. Mol Cell Endocrinol. 1982; 27: 139 ‐ 155. | |
dc.identifier.citedreference | Ben‐Jonathan N. Dopamine: a prolactin‐inhibiting hormone. Endocr Rev. 1985; 6: 564 ‐ 589. | |
dc.identifier.citedreference | Lincoln GA, Clarke IJ. Evidence that melatonin acts in the pituitary gland through a dopamine‐independent mechanism to mediate effects of daylength on the secretion of prolactin in the Ram. J Neuroendocrinol. 1995; 7: 637 ‐ 643. | |
dc.identifier.citedreference | Bibb JA. Decoding dopamine signaling. Cell. 2005; 122: 153 ‐ 155. | |
dc.identifier.citedreference | Lomet D, Cognié J, Chesneau D, et al. The impact of thyroid hormone in seasonal breeding has a restricted transcriptional signature. Cell Mol Life Sci. 2018; 75: 905 ‐ 919. | |
dc.identifier.citedreference | Curlewis JD, Clarke IJ, McNeilly AS. Dopamine D1 receptor analogues act centrally to stimulate prolactin secretion in ewes. J Endocrinol. 1993; 137: 457 ‐ 464. | |
dc.identifier.citedreference | Södersten E, Feyder M, Lerdrup M, et al. Dopamine signaling leads to loss of polycomb repression and aberrant gene activation in experimental parkinsonism. PLoS Genet. 2014; 10: e1004574. | |
dc.identifier.citedreference | Freeman ME, Kanyicska B, Lerant A, et al. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000; 80: 1523 ‐ 1631. | |
dc.identifier.citedreference | Dupré SM, Miedzinska K, Duval CV, et al. Identification of Eya3 and TAC1 as long‐day signals in the sheep pituitary. Curr Biol. 2010; 20: 829 ‐ 835. | |
dc.identifier.citedreference | Yasuo S, Korf H‐W. The hypophysial pars tuberalis transduces photoperiodic signals via multiple pathways and messenger molecules. Gen Comp Endocrinol. 2011; 172: 15 ‐ 22. | |
dc.identifier.citedreference | Korf H‐W. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol. 2018; 258: 236 ‐ 243. | |
dc.identifier.citedreference | Yasuo S, Fischer C, Bojunga J, et al. 2‐Arachidonoyl glycerol sensitizes the pars distalis and enhances forskolin‐stimulated prolactin secretion in Syrian hamsters. Chronobiol Int. 2014; 31: 337 ‐ 342. | |
dc.identifier.citedreference | Wood SH. How can a binary switch within the pars tuberalis control seasonal timing of reproduction? J Endocrinol. 2018; 239: R13 ‐ R25. | |
dc.identifier.citedreference | Hazlerigg DG, Lincoln GA. Hypothesis: cyclical histogenesis is the basis of circannual timing. J Biol Rhythms. 2011; 26: 471 ‐ 485. | |
dc.identifier.citedreference | Migaud M, Batailler M, Pillon D, et al. Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis. J Biol Rhythms. 2011; 26: 486 ‐ 496. | |
dc.identifier.citedreference | Hazlerigg DG, Wyse CA, Dardente H, et al. Photoperiodic variation in CD45‐positive cells and cell proliferation in the mediobasal hypothalamus of the Soay sheep. Chronobiol Int. 2013; 30: 548 ‐ 558. | |
dc.identifier.citedreference | Snitow ME, Li S, Morley MP, et al. Ezh2 represses the basal cell lineage during lung endoderm development. Development. 2015; 142: 108 ‐ 117. | |
dc.identifier.citedreference | Hwang WW, Salinas RD, Siu JJ, et al. Distinct and separable roles for EZH2 in neurogenic astroglia. Elife. 2014; 3: e02439. | |
dc.identifier.citedreference | Dardente H, Wyse CA, Birnie MJ, et al. A molecular switch for photoperiod responsiveness in mammals. Curr Biol. 2010; 20: 2193 ‐ 2198. | |
dc.identifier.citedreference | Masumoto K, Ukai‐Tadenuma M, Kasukawa T, et al. Acute induction of Eya3 by late‐night light stimulation triggers TSH beta expression in photoperiodism. Curr Biol. 2010; 20: 2199 ‐ 2206. | |
dc.identifier.citedreference | Sáenz de Miera C, Hanon EA, Dardente H, et al. Circannual variation in thyroid hormone deiodinases in a short‐day breeder. J Neuroendocrinol. 2013; 25: 412 ‐ 421. | |
dc.identifier.citedreference | Sáenz de Miera C, Sage‐Ciocca D, Simonneaux V, et al. Melatonin‐independent photoperiodic entrainment of the circannual TSH rhythm in the pars tuberalis of the European hamster. J Biol Rhythms. 2018; 33: 302 ‐ 317. | |
dc.identifier.citedreference | Hazlerigg D, Blix AS, Stokkan K‐A. Waiting for the sun: the circannual program of reindeer is delayed by the recurrence of rhythmical melatonin secretion after the arctic night. J Exp Biol. 2017; 220: 163741. | |
dc.identifier.citedreference | Pittendrigh CS. Circadian surfaces and the diversity of possible roles of Circadian organization in photoperiodic induction. Proc Natl Acad Sci USA. 1972; 69: 2734 ‐ 2737. | |
dc.identifier.citedreference | Dawson A, King VMV, Bentley GE, et al. Photoperiodic control of seasonality in birds. J Biol Rhythms. 2001; 16: 365 ‐ 380. | |
dc.identifier.citedreference | Lincoln GA, Messager S, Andersson H, et al. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Natl Acad Sci USA. 2002; 99: 13890 ‐ 13895. | |
dc.identifier.citedreference | Yoshimura T, Yasuo S, Watanabe M, et al. Light‐induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature. 2003; 426: 178 ‐ 181. | |
dc.identifier.citedreference | Nakao N, Ono H, Yamamura T, et al. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature. 2008; 452: 317 ‐ 323. | |
dc.identifier.citedreference | Hanon EA, Lincoln GA, Fustin JM, et al. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol. 2008; 18: 30 ‐ 32. | |
dc.identifier.citedreference | Ikegami K, Liao X, Hoshino Y, et al. Tissue‐specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep. 2014; 9: 1 ‐ 9. | |
dc.identifier.citedreference | Bianco AC, Salvatore D, Gereben B, et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002; 23: 38 ‐ 89. | |
dc.identifier.citedreference | Klosen P, Sébert ME, Rasri K, et al. TSH restores a summer phenotype in photoinhibited mammals via the RF‐amides RFRP3 and kisspeptin. FASEB J. 2013; 27: 2677 ‐ 2686. | |
dc.identifier.citedreference | Ross AW, Helfer G, Russell L, et al. Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats. PLoS ONE. 2011; 6: e21351. | |
dc.identifier.citedreference | Ono H, Hoshino Y, Yasuo S, et al. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci USA. 2008; 105: 18238 ‐ 18242. | |
dc.identifier.citedreference | Revel FG, Saboureau M, Pévet P, et al. Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster. Endocrinology. 2006; 147: 4680 ‐ 4687. | |
dc.identifier.citedreference | Barrett P, Ebling FJP, Schuhler S, et al. Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology. 2007; 148: 3608 ‐ 3617. | |
dc.identifier.citedreference | Helfer G, Ross AW, Morgan PJ. Neuromedin U partly mimics thyroid‐stimulating hormone and triggers Wnt/ß‐catenin signalling in the photoperiodic response of F344 rats. J Neuroendocrinol. 2013; 25: 1264 ‐ 1272. | |
dc.identifier.citedreference | Petri I, Diedrich V, Wilson D, et al. Orchestration of gene expression across the seasons: hypothalamic gene expression in natural photoperiod throughout the year in the Siberian hamster. Sci Rep. 2016; 6: 29689. | |
dc.identifier.citedreference | Milesi S, Simonneaux V, Klosen P. Downregulation of deiodinase 3 is the earliest event in photoperiodic and photorefractory activation of the gonadotropic axis in seasonal hamsters. Sci Rep. 2017; 7: 1 ‐ 10. | |
dc.identifier.citedreference | Graham ES, Turnbull Y, Fotheringham P, et al. Neuromedin U and neuromedin U receptor‐2 expression in the mouse and rat hypothalamus: effects of nutritional status. J Neurochem. 2003; 87: 1165 ‐ 1173. | |
dc.identifier.citedreference | Lewis JE, Ebling FJP. Tanycytes as regulators of seasonal cycles in neuroendocrine function. Front Neurol. 2017; 8: 1 ‐ 7. | |
dc.identifier.citedreference | Rodríguez EM, Blázquez JL, Pastor FE, et al. Hypothalamic tanycytes: a key component of brain‐endocrine interaction. Int Rev Cytol. 2005; 247: 89 ‐ 164. | |
dc.identifier.citedreference | Prevot V, Dehouck B, Sharif A, et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr Rev. 2018; 39: 336 ‐ 368. | |
dc.identifier.citedreference | Benford H, Bolborea M, Pollatzek E, et al. A sweet taste receptor‐dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017; 65: 773 ‐ 789. | |
dc.identifier.citedreference | Lazutkaite G, Soldà A, Lossow K, et al. Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Mol Metab. 2017; 6: 1480 ‐ 1492. | |
dc.identifier.citedreference | Bolborea M, Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013; 36: 91 ‐ 100. | |
dc.identifier.citedreference | Goodman T, Hajihosseini MK. Hypothalamic tanycytes‐masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci. 2015; 9: 1 ‐ 9. | |
dc.identifier.citedreference | Chen R, Wu X, Jiang L, et al. Single‐cell RNA‐Seq reveals hypothalamic cell diversity. Cell Rep. 2017; 18: 3227 ‐ 3241. | |
dc.identifier.citedreference | Campbell JN, Macosko EZ, Fenselau H, et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci. 2017; 20: 484 ‐ 496. | |
dc.identifier.citedreference | Romanov RA, Zeisel A, Bakker J, et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci. 2017; 20: 176 ‐ 188. | |
dc.identifier.citedreference | Dardente H, Lomet D. Photoperiod and thyroid hormone regulate expression of l‐dopachrome tautomerase (Dct), a melanocyte stem‐cell marker, in tanycytes of the ovine hypothalamus. J Neuroendocrinol. 2018; 30: 1 ‐ 10. | |
dc.identifier.citedreference | Clark SD, Duangdao DM, Schulz S, et al. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol. 2011; 519: 1867 ‐ 1893. | |
dc.identifier.citedreference | Pulkkinen V, Ezer S, Sundman L, et al. Neuropeptide S receptor 1 (NPSR1) activates cancer‐related pathways and is widely expressed in neuroendocrine tumors. Virchows Arch. 2014; 465: 173 ‐ 183. | |
dc.identifier.citedreference | Ingham PW, Mcmahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001; 15: 3059 ‐ 3087. | |
dc.identifier.citedreference | Jiao Z, Zhang ZG, Hornyak TJ, et al. Dopachrome tautomerase (Dct) regulates neural progenitor cell proliferation. Dev Biol. 2006; 296: 396 ‐ 408. | |
dc.identifier.citedreference | Nishimura EK, Jordan SA, Oshima H, et al. Dominant role of the niche in melanocyte stem‐cel fate determination. Nature. 2002; 416: 854 ‐ 860. | |
dc.identifier.citedreference | Yamamura T, Hirunagi K, Ebihara S, et al. Seasonal morphological changes in the neuro‐glial interaction between gonadotropin‐releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology. 2004; 145: 4264 ‐ 4267. | |
dc.identifier.citedreference | Prevot V, Croix D, Bouret S, et al. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro‐glio‐endothelial interactions in gonadotropin‐releasing hormone release. Neuroscience. 1999; 94: 809 ‐ 819. | |
dc.identifier.citedreference | Kameda Y, Arai Y, Nishimaki T. Ultrastructural localization of vimentin immunoreactivity and gene expression in tanycytes and their alterations in hamsters kept under different photoperiods. Cell Tissue Res. 2003; 314: 251 ‐ 262. | |
dc.identifier.citedreference | Bolborea M, Laran‐Chich M‐P, Rasri K, et al. Melatonin controls photoperiodic changes in tanycyte vimentin and neural cell adhesion molecule expression in the Djungarian hamster ( Phodopus sungorus ). Endocrinology. 2011; 152: 3871 ‐ 3883. | |
dc.identifier.citedreference | Butruille L, Batailler M, Mazur D, et al. Seasonal reorganization of hypothalamic neurogenic niche in adult sheep. Brain Struct Funct. 2018; 223: 91 ‐ 109. | |
dc.identifier.citedreference | Stevenson TJ, Prendergast BJ. Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc Natl Acad Sci USA. 2013; 110: 16651 ‐ 16656. | |
dc.identifier.citedreference | Stevenson TJ. Epigenetic regulation of biological rhythms: an evolutionary ancient molecular timer. Trends Genet. 2017; 34: 90 ‐ 100. | |
dc.identifier.citedreference | Stoney PN, Rodrigues D, Helfer G, et al. A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways. Brain Behav Immun. 2017; 61: 340 ‐ 352. | |
dc.identifier.citedreference | Xu Y, Tamamaki N, Noda T, et al. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol. 2005; 192: 251 ‐ 264. | |
dc.identifier.citedreference | Kokoeva MV, Yin H, Flier JS. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science. 2005; 310: 679 ‐ 683. | |
dc.identifier.citedreference | Batailler M, Derouet L, Butruille L, et al. Sensitivity to the photoperiod and potential migratory features of neuroblasts in the adult sheep hypothalamus. Brain Struct Funct. 2016; 221: 3301 ‐ 3314. | |
dc.identifier.citedreference | Robins SC, Stewart I, McNay DE, et al. α‐Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF‐responsive neural progenitors. Nat Commun. 2013; 4: 2049. | |
dc.identifier.citedreference | Lee DA, Bedont JL, Pak T, et al. Tanycytes of the hypothalamic median eminence form a diet‐responsive neurogenic niche. Nat Neurosci. 2012; 15: 700 ‐ 702. | |
dc.identifier.citedreference | Haan N, Goodman T, Najdi‐Samiei A, et al. Fgf10‐expressing tanycytes add new neurons to the appetite/energy‐balance regulating centers of the postnatal and adult hypothalamus. J Neurosci. 2013; 33: 6170 ‐ 6180. | |
dc.identifier.citedreference | Batailler M, Chesneau D, Derouet L, et al. Pineal‐dependent increase of hypothalamic neurogenesis contributes to the timing of seasonal reproduction in sheep. Sci Rep. 2018; 8: 1 ‐ 13. | |
dc.identifier.citedreference | Huang LY, Devries GJ, Bittman EL. Bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol. 1998; 36: 410 ‐ 420. | |
dc.identifier.citedreference | Shearer KD, Stoney PN, Morgan PJ, et al. A vitamin for the brain. Trends Neurosci. 2012; 35: 733 ‐ 741. | |
dc.identifier.citedreference | Chaker Z, George C, Petrovska M, et al. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy‐sensing IGF‐I pathway. Neurobiol Aging. 2016; 41: 64 ‐ 72. | |
dc.identifier.citedreference | Helfer G, Ross AW, Russell L, et al. Photoperiod regulates vitamin A and Wnt/β‐catenin signaling in F344 rats. Endocrinology. 2012; 153: 815 ‐ 824. | |
dc.identifier.citedreference | Ikegami K, Yoshimura T. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction. Gen Comp Endocrinol. 2016; 227: 64 ‐ 68. | |
dc.identifier.citedreference | Herwig A, de Vries EM, Bolborea M, et al. Hypothalamic ventricular ependymal thyroid hormone deiodinases are an important element of circannual timing in the Siberian hamster (Phodopus sungorus). PLoS ONE. 2013; 8: e62003. | |
dc.identifier.citedreference | Hazlerigg D, Lomet D, Lincoln G, et al. Neuroendocrine correlates of the critical day length response in the Soay sheep. J Neuroendocrinol. 2018; 30: e12631. | |
dc.identifier.citedreference | Murphy M, Jethwa PH, Warner A, et al. Effects of manipulating hypothalamic triiodothyronine concentrations on seasonal body weight and torpor cycles in Siberian hamsters. Endocrinology. 2012; 153: 101 ‐ 112. | |
dc.identifier.citedreference | Anderson GM, Hardy SL, Valent M, et al. Evidence that thyroid hormones act in the ventromedial preoptic area and the premammillary region of the brain to allow the termination of the breeding season in the ewe. Endocrinology. 2003; 144: 2892 ‐ 2901. | |
dc.identifier.citedreference | Herwig A, Campbell G, Mayer C‐D, et al. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis. Thyroid. 2014; 24: 1575 ‐ 1593. | |
dc.identifier.citedreference | Ross AW, Webster CA, Mercer JG, et al. Photoperiodic regulation of hypothalamic retinoid signaling: association of retinoid X receptor gamma with body weight. Endocrinology. 2004; 145: 13 ‐ 20. | |
dc.identifier.citedreference | Shearer KD, Goodman TH, Ross AW, et al. Photoperiodic regulation of retinoic acid signaling in the hypothalamus. J Neurochem. 2010; 112: 246 ‐ 257. | |
dc.identifier.citedreference | Boucsein A, Benzler J, Hempp C, et al. Photoperiodic and diurnal regulation of WNT signaling in the arcuate nucleus of the female Djungarian hamster, Phodopus sungorus. Endocrinology. 2016; 157: 799 ‐ 809. | |
dc.identifier.citedreference | Ebling FJP, Barrett P. The regulation of seasonal changes in food intake and body weight. J Neuroendocrinol. 2008; 20: 827 ‐ 833. | |
dc.identifier.citedreference | Talbi R, Klosen P, Laran‐Chich MP, et al. Coordinated seasonal regulation of metabolic and reproductive hypothalamic peptides in the desert jerboa. J Comp Neurol. 2016; 524: 3717 ‐ 3728. | |
dc.identifier.citedreference | Talbi R, Laran‐Chich MP, Magoul R, et al. Kisspeptin and RFRP‐3 differentially regulate food intake and metabolic neuropeptides in the female desert jerboa. Sci Rep. 2016; 6: 1 ‐ 10. | |
dc.identifier.citedreference | Clarke IJ, Scott CJ, Rao A, et al. Seasonal changes in the expression of neuropeptide Y and pro‐opiomelanocortin mRNA in the arcuate nucleus of the ovariectomized ewe: relationship to the seasonal appetite and breeding cycles. J Neuroendocrinol. 2000; 12: 1105 ‐ 1111. | |
dc.identifier.citedreference | Clarke IJ, Rao A, Chilliard Y, et al. Photoperiod effects on gene expression for hypothalamic appetite‐regulating peptides and food intake in the ram. Am J Physiol Regul Integr Comp Physiol. 2003; 284: R101 ‐ R115. | |
dc.identifier.citedreference | Barrell GK, Ridgway MJ, Wellby M, et al. Expression of regulatory neuropeptides in the hypothalamus of red deer ( Cervus elaphus ) reveals anomalous relationships in the seasonal control of appetite and reproduction. Gen Comp Endocrinol. 2016; 229: 1 ‐ 7. | |
dc.identifier.citedreference | Reddy AB, Cronin AS, Ford H, et al. Seasonal regulation of food intake and body weight in the male Siberian hamster: studies of hypothalamic orexin (hypocretin), neuropeptide Y (NPY) and pro‐opiomelanocortin (POMC). Eur J Neurosci. 1999; 11: 3255 ‐ 3264. | |
dc.identifier.citedreference | Mercer JG, Moar KM, Ross AW, et al. Photoperiod regulates arcuate nucleus POMC, AGRP, and leptin receptor mRNA in Siberian hamster hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2000; 278: R271 ‐ R281. | |
dc.identifier.citedreference | van den Pol AN, Decavel C, Levi A, et al. Hypothalamic expression of a novel gene product, VGF: immunocytochemical analysis. J Neurosci. 1989; 9: 4122 ‐ 4137. | |
dc.identifier.citedreference | Barrett P, Ross AW, Balik A, et al. Photoperiodic regulation of histamine H3 receptor and VGF messenger ribonucleic acid in the arcuate nucleus of the Siberian hamster. Endocrinology. 2005; 146: 1930 ‐ 1939. | |
dc.identifier.citedreference | Lewis JE, Brameld JM, Hill P, et al. Thyroid hormone and vitamin D regulate VGF expression and promoter activity. J Mol Endocrinol. 2016; 56: 123 ‐ 134. | |
dc.identifier.citedreference | Lewis JE, Brameld JM, Hill P, et al. Hypothalamic over‐expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain. PLoS ONE. 2017; 12: 1 ‐ 14. | |
dc.identifier.citedreference | Jethwa PH, Warner A, Nilaweera KN, et al. VGF‐derived peptide, TLQP‐21, regulates food intake and body weight in Siberian hamsters. Endocrinology. 2007; 148: 4044 ‐ 4055. | |
dc.identifier.citedreference | Dumbell RA, Scherbarth F, Diedrich V, et al. Somatostatin agonist pasireotide promotes a physiological state resembling short‐day acclimation in the photoperiodic male Siberian hamster ( Phodopus sungorus ). J Neuroendocrinol. 2015; 27: 588 ‐ 599. | |
dc.identifier.citedreference | Scherbarth F, Diedrich V, Dumbell RA, et al. Somatostatin receptor activation is involved in the control of daily torpor in a seasonal mammal. Am J Physiol Regul Integr Comp Physiol. 2015; 50: 668 ‐ 674. | |
dc.identifier.citedreference | Revel FG, Saboureau M, Masson‐Pévet M, et al. Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr Biol. 2006; 16: 1730 ‐ 1735. | |
dc.identifier.citedreference | Smith JT, Dungan HM, Stoll EA, et al. Differential regulation of KiSS‐1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology. 2005; 146: 2976 ‐ 2984. | |
dc.identifier.citedreference | Ansel L, Bolborea M, Bentsen AH, et al. Differential regulation of Kiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters. J Biol Rhythms. 2010; 25: 81 ‐ 91. | |
dc.identifier.citedreference | Revel FG, Saboureau M, Pévet P, et al. RFamide‐related peptide gene is a melatonin‐driven photoperiodic gene. Endocrinology. 2008; 149: 902 ‐ 912. | |
dc.identifier.citedreference | Ubuka T, Inoue K, Fukuda Y, et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin‐inhibitory hormone. Endocrinology. 2012; 153: 373 ‐ 385. | |
dc.identifier.citedreference | Rasri‐Klosen K, Simonneaux V, Klosen P. Differential response patterns of kisspeptin and RFRP to photoperiod and sex steroid feedback in the Djungarian hamster ( Phodopus sungorus ). J Neuroendocrinol. 2017; 3: 1 ‐ 13. | |
dc.identifier.citedreference | Angelopoulou E, Quignon C, Kriegsfeld LJ, et al. Functional implications of RFRP‐3 in the central control of daily and seasonal rhythms in reproduction. Front Endocrinol. 2019; 10: 183. | |
dc.identifier.citedreference | Beltramo M, Dardente H, Cayla X, et al. Cellular mechanisms and integrative timing of neuroendocrine control of GnRH secretion by kisspeptin. Mol Cell Endocrinol. 2014; 382: 387 ‐ 399. | |
dc.identifier.citedreference | Tsutsui K, Ubuka T. How to contribute to the progress of neuroendocrinology: discovery of GnIH and progress of GnIH research. Front Endocrinol. 2018; 9: 1 ‐ 16. | |
dc.identifier.citedreference | Simonneaux V. A kiss to drive rhythms in reproduction. Eur J Neurosci. 2018 https://doi.org/10.1111/ejn.14287 | |
dc.identifier.citedreference | Herbison AE. The gonadotropin‐releasing hormone pulse generator. Endocrinology. 2018; 159: 3723 ‐ 3736. | |
dc.identifier.citedreference | Kriegsfeld LJ. Driving reproduction: RFamide peptides behind the wheel. Horm Behav. 2006; 50: 655 ‐ 666. | |
dc.identifier.citedreference | Tsutsui K, Bentley GE, Bedecarrats G, et al. Gonadotropin‐inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Front Neuroendocrinol. 2010; 31: 284 ‐ 295. | |
dc.identifier.citedreference | Ancel C, Bentsen AH, Sébert ME, et al. Stimulatory effect of RFRP‐3 on the gonadotrophic axis in the male Syrian hamster: the exception proves the rule. Endocrinology. 2012; 153: 1352 ‐ 1363. | |
dc.identifier.citedreference | Henningsen JB, Ancel C, Mikkelsen JD, et al. Roles of RFRP‐3 in the daily and seasonal regulation of reproductive activity in female Syrian hamsters. Endocrinology. 2017; 158: 652 ‐ 663. | |
dc.identifier.citedreference | León S, García‐Galiano D, Ruiz‐Pino F, et al. Physiological roles of gonadotropin‐inhibitory hormone signaling in the control of mammalian reproductive axis: studies in the NPFF1 receptor null mouse. Endocrinology. 2014; 155: 2953 ‐ 2965. | |
dc.identifier.citedreference | Decourt C, Anger K, Robert V, et al. No evidence that RFamide related peptide 3 directly modulates LH secretion in the ewe. Endocrinology. 2016; 157: 1566 ‐ 1575. | |
dc.identifier.citedreference | Clarke IJ, Sari IP, Qi Y, et al. Potent action of RFamide‐related peptide‐3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology. 2008; 149: 5811 ‐ 5821. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.