Show simple item record

Cherenkov emission‐based external radiotherapy dosimetry: I. Formalism and feasibility

dc.contributor.authorZlateva, Yana
dc.contributor.authorMuir, Bryan R.
dc.contributor.authorEl Naqa, Issam
dc.contributor.authorSeuntjens, Jan P.
dc.date.accessioned2019-05-31T18:27:47Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationZlateva, Yana; Muir, Bryan R.; El Naqa, Issam; Seuntjens, Jan P. (2019). " Cherenkov emission‐based external radiotherapy dosimetry: I. Formalism and feasibility." Medical Physics 46(5): 2370-2382.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/149332
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherexternal radiotherapy beams
dc.subject.otherMonte Carlo
dc.subject.otherCerenkov
dc.subject.otherCherenkov
dc.subject.otherdosimetry formalism
dc.subject.otherexperimental validation
dc.titleCherenkov emission‐based external radiotherapy dosimetry: I. Formalism and feasibility
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149332/1/mp13414.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149332/2/mp13414_am.pdf
dc.identifier.doi10.1002/mp.13414
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceHale GM, Querry MR, Optical constants of water in the 200‐nm to 200‐ μ m wavelength region. Appl Opt. 1973; 12: 555 – 563.
dc.identifier.citedreferenceGlaser AK, Davis SC, McClatchy DM, Zhang R, Pogue BW, Gladstone DJ. Projection imaging of photon beams by the Čerenkov effect. Med Phys. 2013; 40: 012101‐1 – 012101‐13.
dc.identifier.citedreferenceGlaser AK, Voigt WHA, Davis SC, Zhang R, Gladstone DJ, Pogue BW. Three‐dimensional Cerenkov tomography of energy deposition from ionizing radiation beams. Opt Lett. 2013; 38: 634 – 636.
dc.identifier.citedreferenceZlateva Y, Muir B, Seuntjens J, El Naqa I. Cherenkov emission‐based external radiotherapy dosimetry: II. Electron beam quality specification and uncertainties. Med Phys. 2019; [Epub ahead of print].
dc.identifier.citedreferenceAndreo P, Burns D, Hohlfeld K, et al. Absorbed Dose Determination in External Beam Radiotherapy, Technical Report Series 398, International Atomic Energy Agency, Vienna; 2000.
dc.identifier.citedreferenceDaimon M, Masumura A. Measurement of the refractive index of distilled water from the near‐infrared region to the ultraviolet region. Appl Opt. 2007; 46: 3811 – 3820.
dc.identifier.citedreferenceSpencer LV, Attix FH. A theory of cavity ionization. Radiat Res. 1955; 3: 239 – 254.
dc.identifier.citedreferenceMcEwen M, DeWerd L, Ibbott G, et al. Addendum to the AAPM’s TG‐51 protocol for clinical reference dosimetry of high‐energy photon beams. Med Phys. 2014; 41: 041501‐1 – 041501‐20.
dc.identifier.citedreferenceInternational Commission on Radiation Units and Measurements. Key data for ionizing‐radiation dosimetry: measurement standards and applications. Technical Report 90, Journal of the ICRU Volume 14 No 1, Oxford University Press, Oxford, UK; 2014.
dc.identifier.citedreferenceRogers DWO, Faddegon BA, Ding GX, Ma C‐M, We J, Mackie TR. BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995; 22: 503 – 524.
dc.identifier.citedreferenceRogers D, Walters B, Kawrakow I. BEAMnrc Users Manual. Technical Report PIRS‐0509(A)revL, National Research Council of Canada, Ottawa, Canada; 2012.
dc.identifier.citedreferenceKawrakow I, Mainegra‐Hing E, Rogers D, Tessier F, Walters B. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. Technical Report PIRS‐701, National Research Council of Canada, Ottawa, Canada; 2011.
dc.identifier.citedreferenceRodrigues A, Sawkey D, Yin F‐F, Wu Q. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs. Med Phys. 2015; 42: 2389 – 2403.
dc.identifier.citedreferenceZlateva Y. GitHub repository, scrrznrc. Commit, https://github.com/yanazlateva/scrrznrc/tree/f5356f63166a538ebd3b8f84775b5de69e895428, 2019.
dc.identifier.citedreferenceRogers D, Kawrakow I, Seuntjens J, Walters B, Mainegra‐Hing E. NRC User Codes for EGSnrc. Technical Report PIRS‐702(RevB), National Research Council of Canada, Ottawa, Canada; 2003.
dc.identifier.citedreferenceKawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys. 2000; 27: 485 – 498.
dc.identifier.citedreferenceGlaser AK, Davis SC, Voigt WHA, Zhang R, Pogue BW, Gladstone DJ. Projection imaging of photon beams using Čerenkov‐excited fluorescence. Phys Med Biol. 2013; 58: 601 – 619.
dc.identifier.citedreferenceJean E, Delage M‐E, Beaulieu L. Investigation of the quinine sulfate dihydrate spectral properties and its effects on Cherenkov dosimetry. arXiv preprint arXiv:1809.02048; 2018.
dc.identifier.citedreferenceSmith W. The Primary Aberrations, In: Modern Optical Engineering, 4th ed. McGraw Hill professional, chapter 5. New York City, NY: McGraw‐Hill Education; 2007.
dc.identifier.citedreferenceDas IJ, Cheng C‐W, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG‐106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008; 35: 4186 – 4215.
dc.identifier.citedreferenceGlaser A, Andreozzi J, Zhang R, Pogue BW, Gladstone DJ. Optical cone beam tomography of Cherenkov‐mediated signals for fast 3D dosimetry of X‐ray photon beams in water. Med Phys. 2015; 42: 4127 – 4136.
dc.identifier.citedreferenceBruza P, Andreozzi JM, Gladstone DJ, Jarvis LA, Rottmann J, Pogue BW. Online combination of EPID & Cherenkov imaging for 3‐D dosimetry in a liquid phantom. IEEE Trans Med Imaging. 2017; 36: 2099 – 2103.
dc.identifier.citedreferenceAgostinelli S, Allison J, Amako K, et al. Geant4‐a simulation toolkit. Nucl Instrum Methods Phys Res Sect A. 2003; 506: 250 – 303.
dc.identifier.citedreferenceEdmund Optics Inc. Understanding Optical Specifications. https//www.edmundoptics.com/resources/application-//understanding-optical-specifications/; 2018. Accessed on 2018‐10‐20.
dc.identifier.citedreferenceCrop F, Reynaert N, Pittomvils G, et al. The influence of small field sizes, penumbra, spot size and measurement depth on perturbation factors for microionization chambers. Phys Med Biol. 2009; 54: 2951 – 2969.
dc.identifier.citedreferenceCherenkov P. “Vidimoe svechenie chistykh zhidkostei pod deistviem gamma‐radiatsii" (Visible glow of pure liquids under gamma radiation). Dokl Akad Nauk SSSR. 1934; 2: 451 – 457.
dc.identifier.citedreferenceTamm I, Frank I. “Kogerentnoe izluchenie bystrogo elektrona v srede" (Coherent radiation of a fast electron in a medium). Dokl Akad Nauk. 1937; 14: 107 – 112.
dc.identifier.citedreferenceJelley JV. Cerenkov radiation and its applications. Br J Appl Phys. 1955; 6: 227 – 232.
dc.identifier.citedreferenceMalacara‐Hernández D, Malacara‐Hernández Z. Handbook of Optical Design, 3rd ed. Boca Raton, FL: CRC Press; 2014.
dc.identifier.citedreferenceAgard DA, Hiraoka Y, Shaw P, Sedat JW. Chapter 13: Fluorescence microscopy in three dimensions. In: Taylor DL, Wang Y‐L, eds. Fluorescence Microscopy of Living Cells in Culture Part B. Quantitative Fluorescence Microscopy‐Imaging and Spectroscopy, Volume 30 of Methods in Cell Biology. Cambridge, MA: Academic Press; 1989: 353 – 377.
dc.identifier.citedreferenceHelo Y, Rosenberg I, D’Souza D, et al. Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy. Phys Med Biol. 2014; 59: 1963 – 1978.
dc.identifier.citedreferenceGlaser AK, Zhang R, Gladstone DJ, Pogue BW. Optical dosimetry of radiotherapy beams using Cherenkov radiation: the relationship between light emission and dose. Phys Med Biol. 2014; 59: 3789 – 3811.
dc.identifier.citedreferenceAlmond PR, Biggs PJ, Coursey BM, et al. AAPM’s TG‐51 protocol for clinical reference dosimetry of high‐energy photon and electron beams. Med Phys. 1999; 26: 1847 – 1870.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.