Show simple item record

Asymmetric 3D Elasticâ Plastic Strainâ Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking

dc.contributor.authorMotlag, Maithilee
dc.contributor.authorKumar, Prashant
dc.contributor.authorHu, Kevin Y.
dc.contributor.authorJin, Shengyu
dc.contributor.authorLi, Ji
dc.contributor.authorShao, Jiayi
dc.contributor.authorYi, Xuan
dc.contributor.authorLin, Yen‐hsiang
dc.contributor.authorWalrath, Jenna C.
dc.contributor.authorTong, Lei
dc.contributor.authorHuang, Xinyu
dc.contributor.authorGoldman, Rachel S.
dc.contributor.authorYe, Lei
dc.contributor.authorCheng, Gary J.
dc.date.accessioned2019-05-31T18:27:50Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationMotlag, Maithilee; Kumar, Prashant; Hu, Kevin Y.; Jin, Shengyu; Li, Ji; Shao, Jiayi; Yi, Xuan; Lin, Yen‐hsiang ; Walrath, Jenna C.; Tong, Lei; Huang, Xinyu; Goldman, Rachel S.; Ye, Lei; Cheng, Gary J. (2019). "Asymmetric 3D Elasticâ Plastic Strainâ Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking." Advanced Materials 31(19): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/149335
dc.description.abstractGraphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or inâ plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elasticâ plastic straining is reported that utilizes GPaâ level laser shocking at a high strain rate (dε/dt) â 106â 107 sâ 1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. Highâ resolution imaging and Raman spectroscopy reveal strainâ induced modifications to the atomic and electronic structure in graphene and firstâ principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.Both the bandgap structure and the Fermi level of monolayer graphene are modulated using an easy and effective optomechanical method. Laserâ shockâ induced 3D nanoshaping enables an asymmetric elasticâ plastic straining of graphene, resulting in a wide graphene bandgap of over 2.1 eV and a wide Fermi level adjustment range of 0.6 eV.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbandgap engineering
dc.subject.otheroptomechanical 3D straining
dc.subject.othersingleâ layer graphene
dc.titleAsymmetric 3D Elasticâ Plastic Strainâ Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149335/1/adma201900597.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149335/2/adma201900597-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149335/3/adma201900597_am.pdf
dc.identifier.doi10.1002/adma.201900597
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceS.â M. Choi, S.â H. Jhi, Y.â W. Son, Nano Lett. 2010, 10, 3486.
dc.identifier.citedreferenceF. Xia, T. Mueller, Y.â M. Lin, A. Valdesâ Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839.
dc.identifier.citedreferenceA. K. Geim, Science 2009, 324, 1530.
dc.identifier.citedreferenceK. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
dc.identifier.citedreferenceS.â H. Lee, H.â J. Chung, J. Heo, H. Yang, J. Shin, U.â I. Chung, S. Seo, ACS Nano 2011, 5, 2964.
dc.identifier.citedreferenceV. M. Pereira, A. H. Castro Neto, Phys. Rev. Lett. 2009, 103, 046801.
dc.identifier.citedreferenceG. W. Jones, V. M. Pereira, New J. Phys. 2014, 16, 093044.
dc.identifier.citedreferenceL. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, C. N. R. Rao, Adv. Mater. 2009, 21, 4726.
dc.identifier.citedreferenceB. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J. R. Gong, Nano Lett. 2010, 10, 4975.
dc.identifier.citedreferenceR. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, L. Hornekær, Nat. Mater. 2010, 9, 315.
dc.identifier.citedreferenceD. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. Price, J. M. Tour, Nature 2009, 458, 872.
dc.identifier.citedreferenceP. Kumar, L. S. Panchakarla, C. N. R. Rao, Nanoscale 2011, 3, 2127.
dc.identifier.citedreferenceS. Y. Zhou, G.â H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.â H. Lee, F. Guinea, A. H. Castro Neto, A. Lanzara, Nat. Mater. 2007, 6, 770.
dc.identifier.citedreferenceF. Guinea, M. I. Katsnelson, A. K. Geim, Nat. Phys. 2010, 6, 30.
dc.identifier.citedreferenceZ. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, Z. X. Shen, ACS Nano 2008, 2, 2301.
dc.identifier.citedreferenceT. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, A. C. Ferrari, Phys. Rev. B 2009, 79, 205433.
dc.identifier.citedreferenceN. Rosenkranz, M. Mohr, C. Thomsen, Ann. Phys. 2011, 523, 137.
dc.identifier.citedreferenceS.â M. Choi, S.â H. Jhi, Y.â W. Son, Phys. Rev. B 2010, 81, 081407R.
dc.identifier.citedreferenceT. Zhang, H. Gao, J. Appl. Mech. 2015, 82, 051001.
dc.identifier.citedreferenceG. Gui, J. Li, J. Zhong, Phys. Rev. B 2008, 78, 075435.
dc.identifier.citedreferenceG. Cocco, E. Cadelano, L. Colombo, Phys. Rev. B 2010, 81, 241412R.
dc.identifier.citedreferenceJ. Hicks, A. Tejeda, A. Talebâ Ibrahimi, M. S. Nevius, F. Wang, K. Shepperd, J. Palmer, F. Bertran, P. Le Fèvre, J. Kunc, W. A. de Heer, C. Berger, E. H. Conrad, Nat. Phys. 2013, 9, 49.
dc.identifier.citedreferenceM. P. Ariza, R. Serrano, J. P. Mendez, M. Ortiz, Philos. Mag. 2012, 92, 2004.
dc.identifier.citedreferenceW. Yan, W.â Y. He, Z.â D. Chu, M. Liu, L. Meng, R.â F. Dou, Y. Zhang, Z. Liu, J.â C. Nie, L. He, Nat. Commun. 2013, 4, 2159.
dc.identifier.citedreferenceN. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. C. Neto, M. F. Crommie, Science 2010, 329, 544.
dc.identifier.citedreferenceN. N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright, S. D. Solares, D. B. Newell, N. B. Zhitenev, J. A. Stroscio, Science 2012, 336, 1557.
dc.identifier.citedreferenceH. Gao, Y. Hu, Y. Xuan, J. Li, Y. Yang, R. V. Martinez, C. Li, J. Luo, M. Qi, G. J. Cheng, Science 2014, 346, 1352.
dc.identifier.citedreferenceX. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, J. Li, Nano Res. 2016, 9, 507.
dc.identifier.citedreferenceZ. Wei, T. Hansen, M. Santella, X. Wang, C. R. Parker, X. Jiang, T. Li, M. Glyvradal, K. Jennum, E. Glibstrup, N. Bovet, X. Wang, W. Hu, G. C. Solomon, M. B. Nielsen, X. Qiu, T. Bjørnholm, K. Nørgaard, B. W. Laursen, Adv. Funct. Mater. 2015, 25, 1700.
dc.identifier.citedreferenceQ. H. Wang, K. Kalantarâ Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
dc.identifier.citedreferenceL. Ye, P. Wang, W. Luo, F. Gong, L. Liao, T. Liu, L. Tong, J. Zang, J. Xu, W. Hu, Nano Energy 2017, 37, 53.
dc.identifier.citedreferenceP. H. Mott, A. S. Argon, U. W. Suter, Philos. Mag. A 1993, 67, 931.
dc.identifier.citedreferenceA. Stukowski, A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 2012, 20, 035012.
dc.identifier.citedreferenceK. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
dc.identifier.citedreferenceK. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
dc.identifier.citedreferenceA. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
dc.identifier.citedreferenceF. Schwierz, Nat. Nanotechnol. 2010, 5, 487.
dc.identifier.citedreferenceS. Bae, H. Kim, Y. Lee, X. Xu, J.â S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.â J. Kim, K. S. Kim, B. Ã zyilmaz, J.â H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
dc.identifier.citedreferenceT.â H. Han, Y. Lee, M.â R. Choi, S.â H. Woo, S.â H. Bae, B. H. Hong, J.â H. Ahn, T.â W. Lee, Nat. Photonics 2012, 6, 105.
dc.identifier.citedreferenceX. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, D. Wu, Adv. Mater. 2010, 22, 2743.
dc.identifier.citedreferenceF. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nat. Mater. 2007, 6, 652.
dc.identifier.citedreferenceJ. T. Robinson, F. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan, Nano Lett. 2008, 8, 3137.
dc.identifier.citedreferenceC.â H. Lu, H.â H. Yang, C.â L. Zhu, X. Chen, G.â N. Chen, Angew. Chem. 2009, 121, 4879.
dc.identifier.citedreferenceA. N. Grigorenko, M. Polini, K. S. Novoselov, Nat. Photonics 2012, 6, 749.
dc.identifier.citedreferenceJ. Chen, M. Badioli, P. Alonsoâ González, S. Thongrattanasiri, F. Huth, J. Osmond, M. SpasenoviÄ , A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. de Abajo, R. Hillenbrand, F. H. L. Koppens, Nature 2012, 487, 77.
dc.identifier.citedreferenceK. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, F. H. L. Koppens, Nat. Phys. 2013, 9, 248.
dc.identifier.citedreferenceD. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, X. Xu, Nat. Nanotechnol. 2012, 7, 114.
dc.identifier.citedreferenceC. Zeng, E. B. Song, M. Wang, S. Lee, C. M. Torres, J. Tang, B. H. Weiller, K. L. Wang, Nano Lett. 2013, 13, 2370.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.