Show simple item record

3D superimposition of craniofacial imaging—The utility of multicentre collaborations

dc.contributor.authorYatabe, Marilia
dc.contributor.authorPrieto, Juan Carlos
dc.contributor.authorStyner, Martin
dc.contributor.authorZhu, Hongtu
dc.contributor.authorRuellas, Antonio Carlos
dc.contributor.authorPaniagua, Beatriz
dc.contributor.authorBudin, Francois
dc.contributor.authorBenavides, Erika
dc.contributor.authorShoukri, Brandon
dc.contributor.authorMichoud, Loic
dc.contributor.authorRibera, Nina
dc.contributor.authorCevidanes, Lucia
dc.date.accessioned2019-05-31T18:28:22Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationYatabe, Marilia; Prieto, Juan Carlos; Styner, Martin; Zhu, Hongtu; Ruellas, Antonio Carlos; Paniagua, Beatriz; Budin, Francois; Benavides, Erika; Shoukri, Brandon; Michoud, Loic; Ribera, Nina; Cevidanes, Lucia (2019). "3D superimposition of craniofacial imaging—The utility of multicentre collaborations." Orthodontics & Craniofacial Research : 213-220.
dc.identifier.issn1601-6335
dc.identifier.issn1601-6343
dc.identifier.urihttps://hdl.handle.net/2027.42/149360
dc.publisherWiley Periodicals, Inc.
dc.subject.other3D analysis
dc.subject.otherpersonalized orthodontics
dc.subject.otherartificial intelligence
dc.title3D superimposition of craniofacial imaging—The utility of multicentre collaborations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149360/1/ocr12281.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149360/2/ocr12281_am.pdf
dc.identifier.doi10.1111/ocr.12281
dc.identifier.sourceOrthodontics & Craniofacial Research
dc.identifier.citedreferenceNaji P, Alsufyani NA, Lagravere MO. Reliability of anatomic structures as landmarks in three‐dimensional cephalometric analysis using CBCT. Angle Orthod. 2014; 84 ( 5 ): 762 ‐ 772.
dc.identifier.citedreferenceBjork A. Sutural growth of the upper face studied by the implant method. Rep Congr Eur Orthod Soc. 1964; 40: 49 ‐ 65.
dc.identifier.citedreferencede Oliveira Ruellas AC, Ghislanzoni LTH, Gomes MR, et al. Comparison and reproducibility of 2 regions of reference for maxillary regional registration with cone‐beam computed tomography. Am J Orthod Dentofac Orthop. 2016; 149 ( 4 ): 533 ‐ 542.
dc.identifier.citedreferenceBjork A. Prediction of mandibular growth rotation. Am J Orthod. 1969; 55 ( 6 ): 585 ‐ 599.
dc.identifier.citedreferenceKrarup S, Darvann TA, Larsen P, Marsh JL, Kreiborg S. Three‐dimensional analysis of mandibular growth and tooth eruption. J Anat. 2005; 207 ( 5 ): 669 ‐ 682.
dc.identifier.citedreferencede Oliveira Ruellas AC, Yatabe MS, Souki BQ, et al. 3D mandibular superimposition: comparison of regions of reference for voxel‐based registration. PLoS ONE. 2016; 11 ( 6 ): e0157625.
dc.identifier.citedreferenceNguyen T, Cevidanes L, Franchi L, Ruellas A, Jackson T. Three‐dimensional mandibular regional superimposition in growing patients. Am J Orthod Dentofac Orthop. 2018; 153 ( 5 ): 747 ‐ 754.
dc.identifier.citedreferenceWeissheimer A, Menezes LM, Koerich L, Pham J, Cevidanes LH. Fast three‐dimensional superimposition of cone beam computed tomography for orthopaedics and orthognathic surgery evaluation. Int J Oral Maxillofac Surg. 2015; 44 ( 9 ): 1188 ‐ 1196.
dc.identifier.citedreferenceChoi JH, Mah J. A new method for superimposition of CBCT volumes. J Clin Orthod. 2010; 44 ( 5 ): 303 ‐ 312.
dc.identifier.citedreferenceGupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK. A knowledge‐based algorithm for automatic detection of cephalometric landmarks on CBCT images. Int J Comput Assist Radiol Surg. 2015; 10 ( 11 ): 1737 ‐ 1752.
dc.identifier.citedreferenceGribel BF, Gribel MN, Frazao DC, McNamara JA Jr, Manzi FR. Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod. 2011; 81 ( 1 ): 26 ‐ 35.
dc.identifier.citedreferenceGribel BF, Gribel MN, Manzi FR, Brooks SL, McNamara JA Jr. From 2D to 3D: an algorithm to derive normal values for 3‐dimensional computerized assessment. Angle Orthod. 2011; 81 ( 1 ): 3 ‐ 10.
dc.identifier.citedreferenceFuyamada M, Nawa H, Shibata M, et al. Reproducibility of landmark identification in the jaw and teeth on 3‐dimensional cone‐beam computed tomography images. Angle Orthod. 2011; 81 ( 5 ): 843 ‐ 849.
dc.identifier.citedreferenceZamora N, Llamas JM, Cibrian R, Gandia JL, Paredes V. A study on the reproducibility of cephalometric landmarks when undertaking a three‐dimensional (3D) cephalometric analysis. Med Oral Patol Oral Cir Bucal. 2012; 17 ( 4 ): e678 ‐ e688.
dc.identifier.citedreferencede Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D. Observer reliability of three‐dimensional cephalometric landmark identification on cone‐beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 107 ( 2 ): 256 ‐ 265.
dc.identifier.citedreferenceLudlow JB, Gubler M, Cevidanes L, Mol A. Precision of cephalometric landmark identification: cone‐beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop. 2009; 136 ( 3 ): 312 e311‐310; discussion 312‐313.
dc.identifier.citedreferenceKhambay B, Ullah R. Current methods of assessing the accuracy of three‐dimensional soft tissue facial predictions: technical and clinical considerations. Int J Oral Maxillofac Surg. 2015; 44 ( 1 ): 132 ‐ 138.
dc.identifier.citedreferenceGerig G, Jomier M, Chakos M. Valmet: A new validation tool for assessing and improving 3D object segmentation. Paper presented at: International Conference on Medical Image Computing and Computer‐Assisted Intervention 2001.
dc.identifier.citedreferenceSolem RC, Ruellas A, Ricks‐Oddie JL, et al. Congenital and acquired mandibular asymmetry: mapping growth and remodeling in 3 dimensions. Am J Orthod Dentofacial Orthop. 2016; 150 ( 2 ): 238 ‐ 251.
dc.identifier.citedreferenceGomes LR, Cevidanes LH, Gomes MR, et al. Counterclockwise maxillomandibular advancement surgery and disc repositioning: can condylar remodeling in the long‐term follow‐up be predicted? Int J Oral Maxillofac Surg. 2017; 46 ( 12 ): 1569 ‐ 1578.
dc.identifier.citedreferenceNguyen T, Cevidanes L, Paniagua B, Zhu H, Koerich L, De Clerck H. Use of shape correspondence analysis to quantify skeletal changes associated with bone‐anchored Class III correction. Angle Orthod. 2014; 84 ( 2 ): 329 ‐ 336.
dc.identifier.citedreferenceda Motta AT, de Assis Ribeiro Carvalho F, Oliveira AE, Cevidanes LH, de Oliveira Almeida MA. Superimposition of 3D cone‐beam CT models in orthognathic surgery. Dental Press J Orthod. 2010; 15 ( 2 ): 39 ‐ 41.
dc.identifier.citedreferenceKwon EK, Louie K, Kulkarni A, et al. The role of Ellis‐Van Creveld 2(EVC2) in mice during cranial bone development. Anat Rec (Hoboken). 2018; 301 ( 1 ): 46 ‐ 55.
dc.identifier.citedreferenceChang YJ, Ruellas ACO, Yatabe MS, Westgate PM, Cevidanes LHS, Huja SS. Soft tissue changes measured with three‐dimensional software provides new insights for surgical predictions. J Oral Maxillofac Surg. 2017; 75 ( 10 ): 2191 ‐ 2201.
dc.identifier.citedreferenceAtresh A, Cevidanes LHS, Yatabe M, et al. Three‐dimensional treatment outcomes in Class II patients with different vertical facial patterns treated with the Herbst appliance. Am J Orthod Dentofacial Orthop. 2018; 154 ( 2 ): 238 ‐ 248 e231.
dc.identifier.citedreferenceCruz‐Escalante MA, Aliaga‐Del Castillo A, Soldevilla L, Janson G, Yatabe M, Zuazola RV. Extreme skeletal open bite correction with vertical elastics. Angle Orthod. 2017; 87 ( 6 ): 911 ‐ 923.
dc.identifier.citedreferenceYatabe M, Garib DG, Faco RAS, et al. Bone‐anchored maxillary protraction therapy in patients with unilateral complete cleft lip and palate: 3‐dimensional assessment of maxillary effects. Am J Orthod Dentofacial Orthop. 2017; 152 ( 3 ): 327 ‐ 335.
dc.identifier.citedreferencede Dumast P, Mirabel C, Cevidanes L, et al. A web‐based system for neural network based classification in temporomandibular joint osteoarthritis. Comput Med Imaging Graph. 2018; 67: 45 ‐ 54.
dc.identifier.citedreferenceBroadbent BH. A new x‐ray technique and its application to orthodontia. Angle Orthod. 1931; 1 ( 2 ): 45 ‐ 66.
dc.identifier.citedreferenceSteiner CC. The use of cephalometrics as an aid to planning and assessing orthodontic treatment: report of a case. Am J Orthod. 1960; 46 ( 10 ): 721 ‐ 735.
dc.identifier.citedreferenceBronfman CN, Janson G, Pinzan A, Rocha TL. Cephalometric norms and esthetic profile preference for the Japanese: a systematic review. Dental Press J Orthod. 2015; 20 ( 6 ): 43 ‐ 51.
dc.identifier.citedreferenceJanson G, Quaglio CL, Pinzan A, Franco EJ, Freitas MRD. Craniofacial characteristics of Caucasian and Afro‐Caucasian Brazilian subjects with normal occlusion. J Appl Oral Sci. 2011; 19 ( 2 ): 118 ‐ 124.
dc.identifier.citedreferenceMars M, James DR, Lamabadusuriya SP. The Sri Lankan Cleft Lip and Palate Project: the unoperated cleft lip and palate. Cleft Palate J. 1990; 27 ( 1 ): 3 ‐ 6.
dc.identifier.citedreferenceLiang X, Jacobs R, Hassan B, et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi‐slice CT (MSCT): part I. On subjective image quality. Eur J Radiol. 2010; 75 ( 2 ): 265 ‐ 269.
dc.identifier.citedreferenceLiang X, Lambrichts I, Sun Y, et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi‐slice CT (MSCT). Part II: on 3D model accuracy. Eur J Radiol. 2010; 75 ( 2 ): 270 ‐ 274.
dc.identifier.citedreferenceLagravere MO, Major PW, Carey J. Sensitivity analysis for plane orientation in three‐dimensional cephalometric analysis based on superimposition of serial cone beam computed tomography images. Dentomaxillofac Radiol. 2010; 39 ( 7 ): 400 ‐ 408.
dc.identifier.citedreferenceDeCesare A, Secanell M, Lagravere MO, Carey J. Multiobjective optimization framework for landmark measurement error correction in three‐dimensional cephalometric tomography. Dentomaxillofac Radiol. 2013; 42 ( 7 ): 20130035.
dc.identifier.citedreferenceAdams GL, Gansky SA, Miller AJ, Harrell WE Jr, Hatcher DC. Comparison between traditional 2‐dimensional cephalometry and a 3‐dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop. 2004; 126 ( 4 ): 397 ‐ 409.
dc.identifier.citedreferenceKapila S, Conley RS, Harrell WE Jr. The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol. 2011; 40 ( 1 ): 24 ‐ 34.
dc.identifier.citedreferenceAngelopoulos C. Cone beam tomographic imaging anatomy of the maxillofacial region. Dent Clin North Am. 2008; 52 ( 4 ): 731 ‐ 752, vi.
dc.identifier.citedreferenceFarman AG. ALARA still applies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005; 100 ( 4 ): 395 ‐ 397.
dc.identifier.citedreferenceEvangelista K, Vasconcelos Kde F, Bumann A, Hirsch E, Nitka M, Silva MA. Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone‐beam computed tomography. Am J Orthod Dentofacial Orthop. 2010; 138 ( 2 ): 133 e131‐137; discussion 133‐135.
dc.identifier.citedreferenceCevidanes LH, Bailey LJ, Tucker GR Jr, et al. Superimposition of 3D cone‐beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol. 2005; 34 ( 6 ): 369 ‐ 375.
dc.identifier.citedreferenceBookstein F, Schafer K, Prossinger H, et al. Comparing frontal cranial profiles in archaic and modern homo by morphometric analysis. Anat Rec. 1999; 257 ( 6 ): 217 ‐ 224.
dc.identifier.citedreferenceGhoneima A, Cho H, Farouk K, Kula K. Accuracy and reliability of landmark‐based, surface‐based and voxel‐based 3D cone‐beam computed tomography superimposition methods. Orthod Craniofac Res. 2017; 20 ( 4 ): 227 ‐ 236.
dc.identifier.citedreferenceBazina M, Cevidanes L, Ruellas A, et al. Precision and reliability of Dolphin 3‐dimensional voxel‐based superimposition. Am J Orthod Dentofacial Orthop. 2018; 153 ( 4 ): 599 ‐ 606.
dc.identifier.citedreferenceCevidanes LH, Motta A, Proffit WR, Ackerman JL, Styner M. Cranial base superimposition for 3‐dimensional evaluation of soft‐tissue changes. Am J Orthod Dentofacial Orthop. 2010; 137 ( 4 suppl ): S120 ‐ S129.
dc.identifier.citedreferenceCevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3‐dimensional cone‐beam computed tomography models. Am J Orthod Dentofacial Orthop. 2006; 129 ( 5 ): 611 ‐ 618.
dc.identifier.citedreferenceCevidanes LH, Heymann G, Cornelis MA, DeClerck HJ, Tulloch JF. Superimposition of 3‐dimensional cone‐beam computed tomography models of growing patients. Am J Orthod Dentofacial Orthop. 2009; 136 ( 1 ): 94 ‐ 99.
dc.identifier.citedreferenceAlmukhtar A, Ju X, Khambay B, McDonald J, Ayoub A. Comparison of the accuracy of voxel based registration and surface based registration for 3D assessment of surgical change following orthognathic surgery. PLoS ONE. 2014; 9 ( 4 ): e93402.
dc.identifier.citedreferencePonce‐Garcia C, Lagravere‐Vich M, Cevidanes LHS, de Olivera Ruellas AC, Carey J, Flores‐Mir C. Reliability of three‐dimensional anterior cranial base superimposition methods for assessment of overall hard tissue changes: a systematic review. Angle Orthod. 2018; 88 ( 2 ): 233 ‐ 245.
dc.identifier.citedreferenceKim I, Oliveira ME, Duncan WJ, Cioffi I, Farella M. 3D assessment of mandibular growth based on image registration: a feasibility study in a rabbit model. Biomed Res Int. 2014; 2014: 276128.
dc.identifier.citedreferenceBjork A, Skieller V. Normal and abnormal growth of the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years. Eur J Orthod 1983; 5 ( 1 ): 1 ‐ 46.
dc.identifier.citedreferenceBambha JK. Longitudinal cephalometric roentgenographic study of face and cranium in relation to body height. J Am Dent Assoc. 1961; 63: 776 ‐ 799.
dc.identifier.citedreferenceEfstratiadis SS, Cohen G, Ghafari J. Evaluation of differential growth and orthodontic treatment outcome by regional cephalometric superpositions. Angle Orthod. 1999; 69 ( 3 ): 225 ‐ 230.
dc.identifier.citedreferenceEfstratiadis S, Baumrind S, Shofer F, Jacobsson‐Hunt U, Laster L, Ghafari J. Evaluation of Class II treatment by cephalometric regional superpositions versus conventional measurements. Am J Orthod Dentofacial Orthop. 2005; 128 ( 5 ): 607 ‐ 618.
dc.identifier.citedreferenceGhafari J, Engel FE, Laster LL. Cephalometric superimposition on the cranial base: a review and a comparison of four methods. Am J Orthod Dentofacial Orthop. 1987; 91 ( 5 ): 403 ‐ 413.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.