Show simple item record

Heating of multi‐species upflowing ion beams observed by Cluster on March 28, 2001

dc.contributor.authorYu, FangBo
dc.contributor.authorFu, SuiYan
dc.contributor.authorSun, WeiJie
dc.contributor.authorZhou, XuZhi
dc.contributor.authorXie, Lun
dc.contributor.authorLiu, Han
dc.contributor.authorZhao, Duo
dc.contributor.authorZhao, ShaoJie
dc.contributor.authorLi, Li
dc.contributor.authorZhang, JingWen
dc.contributor.authorWu, Tong
dc.contributor.authorXiong, Ying
dc.date.accessioned2019-06-20T17:04:16Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationYu, FangBo; Fu, SuiYan; Sun, WeiJie; Zhou, XuZhi; Xie, Lun; Liu, Han; Zhao, Duo; Zhao, ShaoJie; Li, Li; Zhang, JingWen; Wu, Tong; Xiong, Ying (2019). "Heating of multi‐species upflowing ion beams observed by Cluster on March 28, 2001." Earth and Planetary Physics 3(3): 204-211.
dc.identifier.issn2096-3955
dc.identifier.issn2096-3955
dc.identifier.urihttps://hdl.handle.net/2027.42/149495
dc.publisherWiley Periodicals, Inc.
dc.subject.otherU-shaped potential drop
dc.subject.otherpreferentially heated heavy ions
dc.subject.otherheating above AAR
dc.subject.otherion beams
dc.subject.otherinverted-V structures
dc.subject.otheroxygen
dc.titleHeating of multi‐species upflowing ion beams observed by Cluster on March 28, 2001
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149495/1/epp320083.pdf
dc.identifier.doi10.26464/epp2019022
dc.identifier.sourceEarth and Planetary Physics
dc.identifier.citedreferenceMarklund, G. T. ( 2009 ). On the ionospheric coupling of auroral electric fields. Nonlin. Processes Geophys., 16 ( 2 ), 365 – 372. https://doi.org/10.5194/npg‐16‐365‐2009
dc.identifier.citedreferenceErgun, R. E., Andersson, L., Main, D., Su, Y. J., Newman, D. L., Goldman, M. V., Carlson, C. W., Hull, A. J., McFadden, J. P., and Mozer, F. S. ( 2004 ). Auroral particle acceleration by strong double layers: The upward current region. J. Geophys. Res. Space Phys., 109 ( A12 ), A12220. https://doi.org/10.1029/2004JA010545
dc.identifier.citedreferenceErlandson, R. E., Zanetti, L. J., Acuña, M. H., Eriksson, A. I., Eliasson, L., Boehm, M. H., and Blomberg, L. G. ( 1994 ). Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines. Geophys. Res. Lett., 21 ( 17 ), 1855 – 1858. https://doi.org/10.1029/94GL01363
dc.identifier.citedreferenceEscoubet, C. P., Fehringer, M., and Goldstein, M. ( 2001 ). Introduction: The Cluster mission. Ann. Geophys., 19 ( 10‐12 ), 1197 – 1200. https://doi.org/10.5194/angeo‐19‐1197‐2001
dc.identifier.citedreferenceGorney, D. J., Clarke, A., Croley, D., Fennell, J., Luhmann, J., and Mizera, P. ( 1981 ). The distribution of ion beams and conics below 8000 km. J. Geophys. Res. Space Phys., 86 ( A1 ), 83 – 89. https://doi.org/10.1029/JA086iA01p00083
dc.identifier.citedreferenceHudson, M. K., and Mozer, F. S. ( 1978 ). Electrostatic shocks, double layers, and anomalous resistivity in the magnetosphere. Geophys. Res. Lett., 5, 131. https://doi.org/10.1029/GL005i002p00131
dc.identifier.citedreferenceKintner, P. M., Vago, J., Chesney, S., Arnoldy, R. L., Lynch, K. A., Pollock, C. J., and Moore, T. E. ( 1992 ). Localized lower hybrid acceleration of ionospheric plasma. Phys. Rev. Lett., 68 ( 16 ), 2448 – 2451. https://doi.org/10.1103/PhysRevLett.68.2448
dc.identifier.citedreferenceKnudsen, D. J., Whalen, B. A., Abe, T., and Yau, A. ( 1994 ). Temporal evolution and spatial dispersion of ion conics: evidence for a polar cusp heating wall. In J. L. Burch, et al. (Eds.), Solar System Plasmas in Space and Time (pp. 163 ‐ 169 ). Washington DC: American Geophysical Union. https://doi.org/10.1029/GM084p0163
dc.identifier.citedreferenceKorth, A., Fränz, M., Zong, Q. G., Fritz, T. A., Sauvaud, J. A., Rème, H., Dandouras, I., Friedel, R., Mouikis, C. G., & Daly, P. W. ( 2004 ). Ion injections at auroral latitude during the March 31, 2001 magnetic storm observed by Cluster. Geophys. Res. Lett., 31 ( 20 ), L20806. https://doi.org/10.1029/2004GL020356
dc.identifier.citedreferenceKronberg, E. A., Ashour‐Abdalla, M., Dandouras, I., Delcourt, D. C., Grigorenko, E. E., Kistler, L. M., Kuzichev, I. V., Liao, J., Maggiolo, R., & Zelenyi, L. M. ( 2014 ). Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models. Space Sci. Rev., 184 ( 1‐4 ), 173 – 235. https://doi.org/10.1007/s11214‐014‐0104‐0
dc.identifier.citedreferenceLu, G., Reiff, P. H., Moore, T. E., and Heelis, R. A. ( 1992 ). Upflowing ionospheric ions in the auroral region. Journal of Geophysical Research:Space Physics, 97 ( A11 ), 16855 – 16863. https://doi.org/10.1029/92JA01435
dc.identifier.citedreferenceLund, E. J., Möbius, E., Tang, L., Kistler, L. M., Popecki, M. A., Klumpar, D. M., Peterson, W. K., Shelley, E. G., Klecker, B., & Pfaff R. F. ( 1998 ). FAST observations of preferentially accelerated He + in association with auroral electromagnetic ion cyclotron waves. Geophys. Res. Lett., 25 ( 12 ), 2049 – 2052. https://doi.org/10.1029/98GL00304
dc.identifier.citedreferenceLund, E. J., Möbius, E., Klumpar, D. M., Kistler, L. M., Popecki, M. A., Klecker, B., Ergun, R. E., McFadden, J. P., Carlson, C. W., and Strangeway, R. J. ( 1999 ). Direct comparison of transverse ion acceleration mechanisms in the auroral region at solar minimum. J. Geophys. Res. Space Phys., 104 ( A10 ), 22801 – 22805. https://doi.org/10.1029/1999JA900265
dc.identifier.citedreferenceLynch, K. A., Arnoldy, R. L., Kintner, P. M., and Bonnell, J. ( 1996 ). The AMICIST auroral sounding rocket: A comparison of transverse ion acceleration mechanisms. Geophys. Res. Lett., 23 ( 23 ), 3293 – 3296. https://doi.org/10.1029/96GL02688
dc.identifier.citedreferenceLynch, K. A., Arnoldy, R. L., Kintner, P. M., Schuck, P., Bonnell, J. W., and Coffey, V. ( 1999 ). Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations. J. Geophys. Res. Space Phys., 104 ( A12 ), 28515 – 28534. https://doi.org/10.1029/1999JA900289
dc.identifier.citedreferenceMarklund, G. T., Sadeghi, S., Karlsson, T., Lindqvist, P. A., Nilsson, H., Forsyth, C., Fazakerley, A., Lucek, E. A., and Pickett, J. ( 2011 ). Altitude distribution of the auroral acceleration potential determined from cluster satellite data at different heights. Phys. Rev. Lett., 106 ( 5 ), 055002. https://doi.org/10.1103/PhysRevLett.106.055002
dc.identifier.citedreferenceMöbius, E., Tang, L., Kistler, L. M., Popecki, M., Lund, E. J., Klumpar, D., Peterson, W., Shelley, E. G., Klecker, B., & Pfaff, R. ( 1998 ). Species dependent energies in upward directed ion beams over auroral arcs as observed with FAST TEAMS. Geophys. Res. Lett., 25 ( 12 ), 2029 – 2032. https://doi.org/10.1029/98GL00381
dc.identifier.citedreferenceMoore, T. E., Lundin, R., Alcayde, D., André, M., Ganguli, S. B., Temerin, M., and Yau, A. ( 1999 ). Source processes in the high‐latitude ionosphere. Space Sci. Rev., 88 ( 1‐2 ), 7 – 84. https://doi.org/10.1023/A:1005299616446
dc.identifier.citedreferenceMorioka, A., Miyoshi, Y., Tsuchiya, F., Misawa, H., Yumoto, K., Parks, G. K., Anderson, R. R., Menietti, J. D., and Honary, F. ( 2009 ). Vertical evolution of auroral acceleration at substorm onset. Ann. Geophys., 27 ( 2 ), 525 – 535. https://doi.org/10.5194/angeo‐27‐525‐2009
dc.identifier.citedreferenceNorqvist, P., André, M., Eliasson, L., Eriksson, A. I., Blomberg, L., Lühr, H., and Clemmons, J. H. ( 1996 ). Ion cyclotron heating in the dayside magnetosphere. J. Geophys. Res. Space Phys., 101 ( A6 ), 13179 – 13193. https://doi.org/10.1029/95JA03596
dc.identifier.citedreferencePaschmann, G., Haaland, S., and Treumann, R. ( 2003 ). Auroral Plasma Physics. Dordrecht: Springer. https://doi.org/10.1007/978‐94‐007‐1086‐3
dc.identifier.citedreferenceRème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., & Scudder, J. ( 2001 ). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys., 19 ( 10‐12 ), 1303 – 1354. https://doi.org/10.5194/angeo‐19‐1303‐2001
dc.identifier.citedreferenceSadeghi, S., Marklund, G. T., Karlsson, T., Lindqvist, P. A., Nilsson, H., Marghitu, O.,.. Lucek, E. A. ( 2011 ). Spatiotemporal features of the auroral acceleration region as observed by Cluster. J Geophys Res:Space Physics, 116 ( A1 ). https://doi.org/10.1029/2011JA016505
dc.identifier.citedreferenceShelley, E. G., Sharp, R. D., and Johnson, R. G. ( 1976 ). Satellite observations of an ionospheric acceleration mechanism. Geophys. Res. Lett., 3 ( 11 ), 654 – 656. https://doi.org/10.1029/GL003i011p00654
dc.identifier.citedreferenceSong, Y., and Lysak, R. L. ( 2001 ). Towards a new paradigm: from a quasi‐steady description to a dynamical description of the magnetosphere. Space Sci. Rev., 95 ( 1‐2 ), 273 – 292. https://doi.org/10.1023/A:1005288420253
dc.identifier.citedreferenceTemerin, M., Cerny, K., Lotko, W., and Mozer, F. S. ( 1982 ). Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett., 48 ( 17 ), 1175 – 1179. https://doi.org/10.1103/PhysRevLett.48.1175
dc.identifier.citedreferenceTemerin, M., and Roth, I. ( 1986 ). Ion heating by waves with frequencies below the ion gyrofrequency. Geophys. Res. Lett., 13 ( 11 ), 1109 – 1112. https://doi.org/10.1029/GL013i011p01109
dc.identifier.citedreferenceWahlund, J. E., Eriksson, A. I., Holback, B., Boehm, M. H., Bonnell, J., Kintner, P. M., Seyler, C. E., Clemmons, J. H., Eliasson, L., & Zanetti, L. J. ( 1998 ). Broadband ELF plasma emission during auroral energization: 1.Slow ion acoustic waves. J. Geophys. Res. Space Phys., 103 ( A3 ), 4343 – 4375. https://doi.org/10.1029/97JA02008
dc.identifier.citedreferenceWinglee, R. M., Dusenbery, P. B., Collin, H. L., Lin, C. S., and Persoon, A. M. ( 1989 ). Simulations and observations of heating of auroral ion beams. J. Geophys. Res. Space Phys., 94 ( A7 ), 8943 – 8965. https://doi.org/10.1029/JA094iA07p08943
dc.identifier.citedreferenceZong, Q. G., Zhang, H., Fu, S. Y., Wang, Y. F., Pu, Z. Y., Korth, A., Daly, P. W., and Fritz, T. A. ( 2008 ). Ionospheric oxygen ions dominant bursty bulk flows: Cluster and Double Star observations. J. Geophys. Res. Space Phys., 113 ( A7 ), A07S23. https://doi.org/10.1029/2007JA012764
dc.identifier.citedreferenceBalogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J., Thomlinson, J. G., Glassmeier, K. H., Musmann, G., Lühr, H., Buchert, S., & Kivelson, M. G. ( 1997 ). The cluster magnetic field investigation. Space Sci. Rev., 79 ( 1‐2 ), 65 – 91. https://doi.org/10.1023/A:1004970907748
dc.identifier.citedreferenceBlock, L. P. ( 1972 ). Potential double layers in the ionosphere. Cosmic Electrodyn., 3, 349.
dc.identifier.citedreferenceBlock, L. P., and Fälthammar, C. G. ( 1990 ). The role of magnetic‐field‐aligned electric fields in auroral acceleration. J. Geophys. Res. Space Phys., 95 ( A5 ), 5877 – 5888. https://doi.org/10.1029/JA095iA05p05877
dc.identifier.citedreferenceBonnell, J., Kintner, P., Wahlund, J. E., Lynch, K., and Arnoldy, R. ( 1996 ). Interferometric determination of broadband ELF wave phase velocity within a region of transverse auroral ion acceleration. Geophys. Res. Lett., 23 ( 23 ), 3297 – 3300. https://doi.org/10.1029/96GL03238
dc.identifier.citedreferenceChang, T., Crew, G. B., Hershkowitz, N., Jasperse, J. R., Retterer, J. M., and Winningham, J. D. ( 1986 ). Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left‐hand polarized waves. Geophys. Res. Lett., 13 ( 7 ), 636 – 639. https://doi.org/10.1029/GL013i007p00636
dc.identifier.citedreferenceChiu, Y. T., and Schulz, M. ( 1978 ). Self‐consistent particle and parallel electrostatic field distributions in the magnetospheric‐ionospheric auroral region. J. Geophys. Res. Space Phys., 83 ( A2 ), 629 – 642. https://doi.org/10.1029/JA083iA02p00629
dc.identifier.citedreferenceCollin, H. L., Peterson, W. K., and Shelley, E. G. ( 1987 ). Solar cycle variation of some mass dependent characteristics of upflowing beams of terrestrial ions. J. Geophys. Res. Space Phys., 92 ( A5 ), 4757 – 4762. https://doi.org/10.1029/JA092iA05p04757
dc.identifier.citedreferenceCornilleau‐Wehrlin, N., Chanteur, G., Perraut, S., Rezeau, L., Robert, P., Roux, A., de Villedary, C., Canu, P., Maksimovic, M., & Le Contel, O. ( 2003 ). First results obtained by the Cluster STAFF experiment. Ann. Geophys., 21 ( 2 ), 437 – 456. https://doi.org/10.5194/angeo‐21‐437‐2003
dc.identifier.citedreferenceCui, Y. B., Fu, S. Y., and Parks, G. K. ( 2014 ). Heating of ionospheric ion beams in inverted‐V structures. Geophys. Res. Lett., 41 ( 11 ), 3752 – 3758. https://doi.org/10.1002/2014GL060524
dc.identifier.citedreferenceCui, Y. B., Fu, S. Y., Zong, Q. G., Xie, L., Sun, W. J., Zhao, D., Wu, T., and Parks, G. ( 2016 ). Altitude of the upper boundary of AAR based on observations of ion beams in inverted‐V structures: A case study. Sci. China Earth Sci., 59 ( 7 ), 1489 – 1497. https://doi.org/10.1007/s11430‐016‐0019‐3
dc.identifier.citedreferenceEcher, E., Korth, A., Zong, Q. G., Fraünz, M., Gonzalez, W. D., Guarnieri, F. L., Fu, S. Y., and Reme, H. ( 2008 ). Cluster observations of O + escape in the magnetotail due to shock compression effects during the initial phase of the magnetic storm on 17 August 2001. J. Geophys. Res. Space Phys., 113 ( A5 ), A05209. https://doi.org/10.1029/2007JA012624
dc.identifier.citedreferenceErgun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Temerin, M., Roth, I., & Kistler, L. ( 1998 ). FAST satellite observations of large‐amplitude solitary structures. Geophys. Res. Lett., 25 ( 12 ), 2041 – 2044. https://doi.org/10.1029/98GL00636
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.