Show simple item record

Social effects of territorial neighbours on the timing of spring breeding in North American red squirrels

dc.contributor.authorFisher, David N.
dc.contributor.authorWilson, Alastair J.
dc.contributor.authorBoutin, Stan
dc.contributor.authorDantzer, Ben
dc.contributor.authorLane, Jeffrey E.
dc.contributor.authorColtman, David W.
dc.contributor.authorGorrell, Jamie C.
dc.contributor.authorMcAdam, Andrew G.
dc.date.accessioned2019-06-20T17:05:51Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-06-20T17:05:51Z
dc.date.issued2019-06
dc.identifier.citationFisher, David N.; Wilson, Alastair J.; Boutin, Stan; Dantzer, Ben; Lane, Jeffrey E.; Coltman, David W.; Gorrell, Jamie C.; McAdam, Andrew G. (2019). "Social effects of territorial neighbours on the timing of spring breeding in North American red squirrels." Journal of Evolutionary Biology 32(6): 559-571.
dc.identifier.issn1010-061X
dc.identifier.issn1420-9101
dc.identifier.urihttps://hdl.handle.net/2027.42/149549
dc.description.abstractOrganisms can affect one another’s phenotypes when they socially interact. Indirect genetic effects occur when an individual’s phenotype is affected by genes expressed in another individual. These heritable effects can enhance or reduce adaptive potential, thereby accelerating or reversing evolutionary change. Quantifying these social effects is therefore crucial for our understanding of evolution, yet estimates of indirect genetic effects in wild animals are limited to dyadic interactions. We estimated indirect phenotypic and genetic effects, and their covariance with direct effects, for the date of spring breeding in North American red squirrels (Tamiasciurus hudsonicus) living in an array of territories of varying spatial proximity. Additionally, we estimated indirect effects and the strength of selection at low and high population densities. Social effects of neighbours on the date of spring breeding were different from zero at high population densities but not at low population densities. Indirect phenotypic effects accounted for a larger amount of variation in the date of breeding than differences attributable to the among‐individual variance, suggesting social interactions are important for determining breeding dates. The genetic component to these indirect effects was however not statistically significant. We therefore showcase a powerful and flexible method that will allow researchers working in organisms with a range of social systems to estimate indirect phenotypic and genetic effects, and demonstrate the degree to which social interactions can influence phenotypes, even in a solitary species.
dc.publisherPrinceton University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherevolution
dc.subject.otherselection
dc.subject.othersocial interactions
dc.subject.otherTamiasciurus
dc.subject.otherindirect genetic effects
dc.titleSocial effects of territorial neighbours on the timing of spring breeding in North American red squirrels
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149549/1/jeb13437_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149549/2/jeb13437.pdf
dc.identifier.doi10.1111/jeb.13437
dc.identifier.sourceJournal of Evolutionary Biology
dc.identifier.citedreferenceNakagawa, S., & Schielzeth, H. ( 2010 ). Repeatability for Gaussian and non‐Gaussian data: A practical guide for biologists. Biological Reviews, 85, 935 – 956.
dc.identifier.citedreferenceMoore, A. J., Brodie, E. D. I., & Wolf, J. B. ( 1997 ). Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions. Evolution (N. Y.), 51, 1352 – 1362.
dc.identifier.citedreferenceMuir, W. M., Bijma, P., & Schinckel, A. ( 2013 ). Multilevel selection with kin and non‐kin groups, experimental results with japanese quail ( Coturnix japonica ). Evolution (N. Y.), 67, 1598 – 1606.
dc.identifier.citedreferenceKoch, R. M. ( 1972 ). The role of maternal effects in animal breeding: VI. Maternal effects in beef cattle. Journal of Animal Science, 35, 1316. https://doi.org/10.2527/jas1972.3561316x
dc.identifier.citedreferencePiles, M., David, I., Ramon, J., Canario, L., Rafel, O., Pascual, M., … Sánchez, J. P. ( 2017 ). Interaction of direct and social genetic effects with feeding regime in growing rabbits. Genetics Selection Evolution, 49, 58. https://doi.org/10.1186/s12711-017-0333-2
dc.identifier.citedreferencePujol, B., Blanchet, S., Charmantier, A., Danchin, E., Facon, B., Marrot, P., … Winney, I. ( 2018 ). The missing response to selection in the wild. Trends in Ecology & Evolution, 33, 337 – 346. https://doi.org/10.1016/j.tree.2018.02.007
dc.identifier.citedreferenceRéale, D., Berteaux, D., McAdam, A. G., & Boutin, S. ( 2003 ). Lifetime selection on heritable life‐history traits in a natural population of red squirrels. Evolution (N. Y.), 57, 2416 – 2423.
dc.identifier.citedreferenceRegan, C. E., Pilkington, J. G., Bérénos, C., Pemberton, J. M., Smiseth, P. T., & Wilson, A. J. ( 2017 ). Accounting for female space sharing in St. Kilda Soay sheep ( Ovis aries ) results in little change in heritability estimates. Journal of Evolutionary Biology, 30, 96 – 111. https://doi.org/10.1111/jeb.12990
dc.identifier.citedreferenceReid, J. M. ( 2012 ). Predicting evolutionary responses to selection on polyandry in the wild: Additive genetic covariances with female extra‐pair reproduction. Proceedings of the Royal Society B‐Biological Sciences, 279, 4652 – 4660. https://doi.org/10.1098/rspb.2012.1835
dc.identifier.citedreferenceSartori, C., & Mantovani, R. ( 2013 ). Indirect genetic effects and the genetic bases of social dominance: Evidence from cattle. Heredity (Edinb), 110, 3 – 9. https://doi.org/10.1038/hdy.2012.56
dc.identifier.citedreferenceSchielzeth, H. ( 2010 ). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1, 103 – 113. https://doi.org/10.1111/j.2041-210X.2010.00012.x
dc.identifier.citedreferenceSelf, S. G., & Liang, K. Y. ( 1987 ). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of American Statistical Association, 82, 605 – 610. https://doi.org/10.1080/01621459.1987.10478472
dc.identifier.citedreferenceShonfield, J., Taylor, R. W., Boutin, S., Humphries, M. M., & Mcadam, A. G. ( 2012 ). Territorial defence behaviour in red squirrels is influenced by local density. Behaviour, 149, 369 – 390.
dc.identifier.citedreferenceSilvertown, J. W. ( 1980 ). The evolutionary ecology of mast seeding in trees. Biological Journal of the Linnean Society, 14, 235 – 250. https://doi.org/10.1111/j.1095-8312.1980.tb00107.x
dc.identifier.citedreferenceSiracusa, E., Morandini, M., Boutin, S., Humphries, M. M., Dantzer, B., Lane, J. E., & McAdam, A. G. ( 2017 ). Red squirrel territorial vocalizations deter intrusions by conspecific rivals. Behaviour, 154, 1259 – 1273. https://doi.org/10.1163/1568539X-00003467
dc.identifier.citedreferenceSmith, C. C. ( 1978 ). Structure and function of the vocalizations of tree squirrels ( Tamiasciurus ). Journal of Mammalogy, 59, 793 – 808. https://doi.org/10.2307/1380144
dc.identifier.citedreferenceStopher, K. V., Walling, C. A., Morris, A., Guinness, F. E., Clutton‐Brock, T. H., Pemberton, J. M., & Nussey, D. H. ( 2012 ). Shared spatial effects on quantitative genetic parameters: Accounting for spatial autocorrelation and home range overlap reduces estimates of heritability in wild red deer. Evolution, 66, 2411 – 2426. https://doi.org/10.1111/j.1558-5646.2012.01620.x
dc.identifier.citedreferenceTeplitsky, C., Mills, J. A., Yarrall, J. W., & Merilä, J. ( 2010 ). Indirect genetic effects in a sex‐limited trait: The case of breeding time in red‐billed gulls. Journal of Evolutionary Biology, 23, 935 – 944. https://doi.org/10.1111/j.1420-9101.2010.01959.x
dc.identifier.citedreferenceThomson, C. E., Winney, I. S., Salles, O., & Pujol, B. ( 2018 ). A guide to using a multiple‐matrix animal model to disentangle genetic and nongenetic causes of phenotypic variance. PLoS ONE, 13, e0197720. https://doi.org/10.1371/journal.pone.0197720
dc.identifier.citedreferenceWade, M. J. ( 1976 ). Group selection among laboratory populations of Tribolium. Proceedings of the National Academy of Sciences, 73, 4604 – 4607. https://doi.org/10.1073/pnas.73.12.4604
dc.identifier.citedreferenceWilliams, C. T., Lane, J. E., Humphries, M. M., McAdam, A. G., & Boutin, S. ( 2014 ). Reproductive phenology of a food‐hoarding mast‐seed consumer: Resource‐ and density‐dependent benefits of early breeding in red squirrels. Oecologia, 174, 777 – 788. https://doi.org/10.1007/s00442-013-2826-1
dc.identifier.citedreferenceWilson, A. J. ( 2008 ). Why h2 does not always equal VA/VP? Journal of Evolutionary Biology, 21, 647 – 650. https://doi.org/10.1111/j.1420-9101.2008.01500.x
dc.identifier.citedreferenceWilson, A. ( 2014 ). Competition as a source of constraint on life history evolution in natural populations. Heredity (Edinb), 112, 70 – 78. https://doi.org/10.1038/hdy.2013.7
dc.identifier.citedreferenceWilson, A. J., Gelin, U., Perron, M.‐C., & Réale, D. ( 2009 ). Indirect genetic effects and the evolution of aggression in a vertebrate system. Proceedings of the Royal Society B‐Biological Sciences, 276, 533 – 541. https://doi.org/10.1098/rspb.2008.1193
dc.identifier.citedreferenceWilson, D. R., Goble, A. R., Boutin, S., Humphries, M. M., Coltman, D. W., Gorrell, J. C., … McAdam, A. G. ( 2015 ). Red squirrels use territorial vocalizations for kin discrimination. Animal Behavior, 107, 79 – 85. https://doi.org/10.1016/j.anbehav.2015.06.011
dc.identifier.citedreferenceWilson, A. J., & Réale, D. ( 2006 ). Ontogeny of additive and maternal genetic effects: Lessons from domestic mammals. The American Naturalist, 167, E23 – E38.
dc.identifier.citedreferenceWilson, A. J., Morrissey, M. B., Adams, M. J., Walling, C. A., Guinness, F. E., Pemberton, J. M., … Kruuk, L. E. B. ( 2011 ). Indirect genetics effects and evolutionary constraint: An analysis of social dominance in red deer, Cervus elaphus. Journal of Evolutionary Biology, 24, 772 – 783. https://doi.org/10.1111/j.1420-9101.2010.02212.x
dc.identifier.citedreferenceWilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., … Nussey, D. H. ( 2010 ). An ecologist’s guide to the animal model. Journal of Animal Ecology, 79, 13 – 26. https://doi.org/10.1111/j.1365-2656.2009.01639.x
dc.identifier.citedreferenceWolf, J. B., Brodie, E. D. III, Cheverud, J. M., Moore, A. J., & Wade, M. J. ( 1998 ). Evolutionary consequences of indirect genetic effects. Trends in Ecology & Evolution, 13, 64 – 69. https://doi.org/10.1016/S0169-5347(97)01233-0
dc.identifier.citedreferenceAlemu, S. W., Bijma, P., Møller, S. H., Janss, L., & Berg, P. ( 2014 ). Indirect genetic effects contribute substantially to heritable variation in aggression‐related traits in group‐housed mink ( Neovison vison ). Genetics Selection Evolution, 46, 30. https://doi.org/10.1186/1297-9686-46-30
dc.identifier.citedreferenceBérénos, C., Ellis, P. A., Pilkington, J. G., & Pemberton, J. M. ( 2014 ). Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Molecular Ecology, 23, 3434 – 3451. https://doi.org/10.1111/mec.12827
dc.identifier.citedreferenceBijma, P. ( 2010a ). Estimating indirect genetic effects: precision of estimates and optimum designs. Genetics, 186, 1013 – 1028. https://doi.org/10.1534/genetics.110.120493
dc.identifier.citedreferenceBijma, P. ( 2010b ). Multilevel selection 4: modeling the relationship of indirect genetic effects and group size. Genetics, 186, 1029 – 1031. https://doi.org/10.1534/genetics.110.120485
dc.identifier.citedreferenceBijma, P. ( 2011 ). A general definition of the heritable variation that determines the potential of a population to evolve. Genetics, 189, 1347 – 1359. https://doi.org/10.1534/genetics.111.130617
dc.identifier.citedreferenceBijma, P., & Wade, M. J. ( 2008 ). The joint effects of kin, multilevel selection and indirect genetic effects on response to genetic selection. Journal of Evolutionary Biology, 21, 1175 – 1188. https://doi.org/10.1111/j.1420-9101.2008.01550.x
dc.identifier.citedreferenceBoutin, S., McAdam, A., & Humphries, M. ( 2013 ). Anticipatory reproduction in squirrels can succeed in the absence of extra food. New Zealand Journal of Zoology, 40, 337 – 339. https://doi.org/10.1080/03014223.2013.798337
dc.identifier.citedreferenceBoutin, S., Wauters, L. A., McAdam, A., Humphries, M., Tosi, G., & Dhondt, A. ( 2006 ). Anticipatory reproduction and population growth in seed predators. Science (80‐), 314, 1928 – 1930. https://doi.org/10.1126/science.1135520
dc.identifier.citedreferenceBrichette, I., Reyero, M. I., & Garcı́a, C. ( 2001 ). A genetic analysis of intraspecific competition for growth in mussel cultures. Aquaculture, 192, 155 – 169. https://doi.org/10.1016/S0044-8486(00)00439-7
dc.identifier.citedreferenceBrinker, T., Ellen, E. D., Veerkamp, R. F., & Bijma, P. ( 2015 ). Predicting direct and indirect breeding values for survival time in laying hens using repeated measures. Genetics Selection Evolution, 47, 75. https://doi.org/10.1186/s12711-015-0152-2
dc.identifier.citedreferenceBrommer, J. E., & Rattiste, K. ( 2008 ). “Hidden” reproductive conflict between mates in a wild bird population. Evolution, 62, 2326 – 2333. https://doi.org/10.1111/j.1558-5646.2008.00451.x
dc.identifier.citedreferenceCappa, E. P., & Cantet, R. J. C. ( 2008 ). Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model. Silvae Genetica, 57, 45 – 56. https://doi.org/10.1515/sg-2008-0008
dc.identifier.citedreferenceCaro, S. P., Charmantier, A., Lambrechts, M. M., Blondel, J., Balthazart, J., & Williams, T. D. ( 2009 ). Local adaptation of timing of reproduction: Females are in the driver’s seat. Functional Ecology, 23, 172 – 179. https://doi.org/10.1111/j.1365-2435.2008.01486.x
dc.identifier.citedreferenceCosta e Silva, J., Potts, B. M., Bijma, P., Kerr, R. J., & Pilbeam, D. J. ( 2013 ). Genetic control of interactions among individuals: Contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree. New Phytologist, 197, 631 – 641. https://doi.org/10.1111/nph.12035
dc.identifier.citedreferenceCosta e Silva, J., Potts, B. M., Gilmour, A. R., & Kerr, R. J. ( 2017 ). Genetic‐based interactions among tree neighbors: Identification of the most influential neighbors, and estimation of correlations among direct and indirect genetic effects for leaf disease and growth in Eucalyptus globulus. Heredity (Edinb), 119, 125 – 135. https://doi.org/10.1038/hdy.2017.25
dc.identifier.citedreferenceCroft, D. P., James, R., & Krause, J. ( 2008 ). Exploring animal social networks. Oxford, UK: Princeton University Press. https://doi.org/10.1515/9781400837762
dc.identifier.citedreferenceCroft, D. P., Krause, J., & James, R. ( 2004 ). Social networks in the guppy ( Poecilia reticulata ). Proceedings Biological Sciences, 271 ( Suppl ), S516 – S519.
dc.identifier.citedreferenceDantzer, B., Boutin, S., Humphries, M. M., & McAdam, A. G. ( 2012 ). Behavioral responses of territorial red squirrels to natural and experimental variation in population density. Behavioral Ecology and Sociobiology, 66, 865 – 878. https://doi.org/10.1007/s00265-012-1335-2
dc.identifier.citedreferenceDantzer, B., Newman, A. E. M., Boonstra, R., Palme, R., Boutin, S., Humphries, M. M., & McAdam, A. G. ( 2013 ). Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science (80‐.), 340, 1215 – 1217. https://doi.org/10.1126/science.1235765
dc.identifier.citedreferenceDonald, J. L., & Boutin, S. ( 2011 ). Intraspecific cache pilferage by larder‐hoarding red squirrels ( Tamiasciurus hudsonicus ). Journal of Mammalogy, 92, 1013 – 1020. https://doi.org/10.1644/10-MAMM-A-340.1
dc.identifier.citedreferenceEdwards, L. J., Muller, K. E., Wolfinger, R. D., Qaqish, B. F., & Schabenberger, O. ( 2008 ). An R2 statistic for fixed effects in the linear mixed model. Statistics in Medicine, 27, 6137 – 6157. https://doi.org/10.1002/sim.3429
dc.identifier.citedreferenceMuir, W. M. ( 2005 ). Incorporation of competitive effects in forest tree or animal breeding programs. Genetics, 170, 1247 – 1259. https://doi.org/10.1534/genetics.104.035956
dc.identifier.citedreferenceEllen, E. D., Peeters, K., Verhoeven, M., Gols, R., Harvey, J. A., Wade, M. J., … Bijma, P. ( 2016 ). Direct and indirect genetic effects in life‐history traits of flour beetles ( Tribolium castaneum ). Evolution, 70, 207 – 217. https://doi.org/10.1111/evo.12835
dc.identifier.citedreferenceEllen, E. D., Rodenburg, T. B., Albers, G. A. A., Bolhuis, J. E., Camerlink, I., Duijvesteijn, N., … Bijma, P. ( 2014 ). The prospects of selection for social genetic effects to improve welfare and productivity in livestock. Frontiers in Genetics, 5, 377.
dc.identifier.citedreferenceFarine, D. R., & Sheldon, B. C. ( 2015 ). Selection for territory acquisition is modulated by social network structure in a wild songbird. Journal of Evolutionary Biology, 28, 547 – 556. https://doi.org/10.1111/jeb.12587
dc.identifier.citedreferenceFisher, D. N., Boutin, S., Dantzer, B., Humphries, M. M., Lane, J. E., & McAdam, A. G. ( 2017 ). Multilevel and sex‐specific selection on competitive traits in North American red squirrels. Evolution (N. Y.), 71, 1841 – 1854.
dc.identifier.citedreferenceFisher, D. N., & McAdam, A. G. ( 2017 ). Social traits, social networks, and evolutionary biology. Journal of Evolutionary Biology, 30, 2088 – 2103. https://doi.org/10.1111/jeb.13195
dc.identifier.citedreferenceFisher, D. N., & McAdam, A. G. ( 2019 ). Indirect genetic effects clarify how traits can evolve even when fitness does not. Evolution Letters, 3, 4 – 14. https://doi.org/10.1002/evl3.98
dc.identifier.citedreferenceFletcher, Q. E., Landry‐Cuerrier, M., Boutin, S., McAdam, A. G., Speakman, J. R., & Humphries, M. M. ( 2013 ). Reproductive timing and reliance on hoarded capital resources by lactating red squirrels. Oecologia, 173, 1203 – 1215. https://doi.org/10.1007/s00442-013-2699-3
dc.identifier.citedreferenceFletcher, Q. E., Selman, C., Boutin, S., McAdam, A. G., Woods, S. B., Seo, A. Y., … Humphries, M. M. ( 2013 ). Oxidative damage increases with reproductive energy expenditure and is reduced by food‐supplementation. Evolution (N. Y), 67, 1527 – 1536.
dc.identifier.citedreferenceFormica, V. A., McGlothlin, J. W., Wood, C. W., Augat, M. E., Butterfield, R. E., Barnard, M. E., & Brodie, E. D. ( 2011 ). Phenotypic assortment mediates the effect of social selection in a wild beetle population. Evolution (N. Y.), 65, 2771 – 2781.
dc.identifier.citedreferenceFrank, S. A. ( 2007 ). All of life is social. Current Biology, 17, R648 – R650. https://doi.org/10.1016/j.cub.2007.06.005
dc.identifier.citedreferenceGerhardt, F. ( 2005 ). Food pilfering in larder‐hoarding red squirrels ( Tamiasciurus hudsonicus ). Journal of Mammalogy, 86, 108 – 114. https://doi.org/10.1644/1545-1542(2005)086<0108:FPILRS>2.0.CO;2
dc.identifier.citedreferenceGermain, R. R., Wolak, M. E., Arcese, P., Losdat, S., & Reid, J. M. ( 2016 ). Direct and indirect genetic and fine‐scale location effects on breeding date in song sparrows. Journal of Animal Ecology, 85, 1613 – 1624. https://doi.org/10.1111/1365-2656.12575
dc.identifier.citedreferenceGilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J., & Thompson, R. ( 2015 ). ASReml user guide release 4.1 structural specification. Hemel Hempstead, UK: VSN International Ltd.
dc.identifier.citedreferenceGriffing, B. ( 1967 ). Selection in reference to biological groups. I. Individual and group selection applied to populations of unordered groups. Australian Journal of Biological Sciences, 20, 127 – 139. https://doi.org/10.1071/BI9670127
dc.identifier.citedreferenceGunn, M. R., Dawson, D. A., Leviston, A., Hartnup, K., Davis, C. S., Strobeck, C., … Coltman, D. W. ( 2005 ). Isolation of 18 polymorphic microsatellite loci from the North American red squirrel, Tamiasciurus hudsonicus (Sciuridae, Rodentia), and their cross‐utility in other species. Molecular Ecology Notes, 5, 650 – 653. https://doi.org/10.1111/j.1471-8286.2005.01022.x
dc.identifier.citedreferenceHadfield, J. D., & Wilson, A. J. ( 2007 ). Multilevel selection 3: Modeling the effects of interacting individuals as a function of group size. Genetics, 177, 667 – 668. https://doi.org/10.1534/genetics.107.075622
dc.identifier.citedreferenceHoule, D. ( 1992 ). Comparing evolvability and variability of quantitative traits. Genetics, 130, 195 – 204.
dc.identifier.citedreferenceJones, O. R., & Wang, J. ( 2010 ). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10, 551 – 555. https://doi.org/10.1111/j.1755-0998.2009.02787.x
dc.identifier.citedreferenceKalinowski, S. T., Taper, M. L., & Marshall, T. C. ( 2007 ). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099 – 1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
dc.identifier.citedreferenceKelly, D. ( 1994 ). The evolutionary ecology of mast seeding. Trends in Ecology & Evolution, 9, 465 – 470. https://doi.org/10.1016/0169-5347(94)90310-7
dc.identifier.citedreferenceKenward, M. G., & Roger, J. H. ( 1997 ). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983. https://doi.org/10.2307/2533558
dc.identifier.citedreferenceKerr, T. D., Boutin, S., LaMontagne, J. M., McAdam, A. G., & Humphries, M. M. ( 2007 ). Persistent maternal effects on juvenile survival in North American red squirrels. Biology Letters, 3, 289 – 291. https://doi.org/10.1098/rsbl.2006.0615
dc.identifier.citedreferenceKhaw, H. L., Ponzoni, R. W., Yee, H. Y., Bin Aziz, M. A., & Bijma, P. ( 2016 ). Genetic and non‐genetic indirect effects for harvest weight in the GIFT strain of Nile tilapia ( Oreochromis niloticus ). Aquaculture, 450, 154 – 161. https://doi.org/10.1016/j.aquaculture.2015.07.033
dc.identifier.citedreferenceKirkpatrick, M. ( 2009 ). Patterns of quantitative genetic variation in multiple dimensions. Genetica, 136, 271 – 284. https://doi.org/10.1007/s10709-008-9302-6
dc.identifier.citedreferenceKokko, H., Chaturvedi, A., Croll, D., Fischer, M. C., Guillaume, F., Karrenberg, S., … Stapley, J. ( 2017 ). Can evolution supply what ecology demands?. Trends in Ecology & Evolution, 32, 187 – 197. https://doi.org/10.1016/j.tree.2016.12.005
dc.identifier.citedreferenceKrause, J., Croft, D. P., & James, R. ( 2007 ). Social network theory in the behavioural sciences: Potential applications. Behavioral Ecology and Sociobiology, 62, 15 – 27. https://doi.org/10.1007/s00265-007-0445-8
dc.identifier.citedreferenceKrause, J., James, R., Franks, D. W., & Croft, D. P. ( 2014 ). Animal social networks. Oxford, UK: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199679041.001.0001
dc.identifier.citedreferenceKruuk, L. E. B. ( 2004 ). Estimating genetic parameters in natural populations using the “animal model". Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 359, 873 – 890. https://doi.org/10.1098/rstb.2003.1437
dc.identifier.citedreferenceKruuk, L. E. B., & Wilson, A. J. ( 2018 ). The challenge of estimating indirect genetic effects on behavior: A comment on Bailey et al. Behavioral Ecology, 29, 13 – 14.
dc.identifier.citedreferenceLair, H. ( 1990 ). The calls of the red squirrel — a contextual analysis of function. Behaviour, 115, 254 – 282. https://doi.org/10.1163/156853990X00608
dc.identifier.citedreferenceLair, H. ( 2014 ). Length of gestation in the red squirrel, Tamiasciurus hudsonicus. Journal of Mammalogy, 66, 809 – 810.
dc.identifier.citedreferenceLaMontagne, J. M., & Boutin, S. ( 2007 ). Local‐scale synchrony and variability in mast seed production patterns of Picea glauca. Journal of Ecology, 95, 991 – 1000. https://doi.org/10.1111/j.1365-2745.2007.01266.x
dc.identifier.citedreferenceLaMontagne, J. M., Williams, C. T., Donald, J. L., Humphries, M. M., McAdam, A. G., & Boutin, S. ( 2013 ). Linking intraspecific variation in territory size, cone supply, and survival of North American red squirrels. Journal of Mammalogy, 94, 1048 – 1058. https://doi.org/10.1644/12-MAMM-A-245.1
dc.identifier.citedreferenceLande, R. ( 1979 ). Quantitative genetic analysis of multivariate evolution, applied to brain : Body size allometry. Evolution (N. Y.), 33, 402 – 416.
dc.identifier.citedreferenceLane, J. E., Boutin, S., Gunn, M. R., Slate, J., & Coltman, D. W. ( 2007 ). Genetic relatedness of mates does not predict patterns of parentage in North American red squirrels. Animal Behavior, 74, 611 – 619. https://doi.org/10.1016/j.anbehav.2006.12.017
dc.identifier.citedreferenceLane, J. E., Boutin, S., Gunn, M. R., Slate, J., & Coltman, D. W. ( 2008 ). Female multiple mating and paternity in free‐ranging North American red squirrels. Animal Behavior, 75, 1927 – 1937. https://doi.org/10.1016/j.anbehav.2007.10.038
dc.identifier.citedreferenceLane, J., McAdam, A. G., McFarlane, E., Williams, C., Humphries, M. M., Coltman, D., … Boutin, S. ( 2018 ). Phenological shifts in North American red squirrels: Disentangling the roles of phenotypic plasticity and microevolution. Journal of Evolutionary Biology, 31, 810 – 821.
dc.identifier.citedreferenceLarivée, M. L., Boutin, S., Speakman, J. R., McAdam, A. G., & Humphries, M. M. ( 2010 ). Associations between over‐winter survival and resting metabolic rate in juvenile North American red squirrels. Functional Ecology, 24, 597 – 607. https://doi.org/10.1111/j.1365-2435.2009.01680.x
dc.identifier.citedreferenceLiedvogel, M., Cornwallis, C. K., & Sheldon, B. C. ( 2012 ). Integrating candidate gene and quantitative genetic approaches to understand variation in timing of breeding in wild tit populations. Journal of Evolutionary Biology, 25, 813 – 823. https://doi.org/10.1111/j.1420-9101.2012.02480.x
dc.identifier.citedreferenceLusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., & Dawson, S. M. ( 2003 ). The bottlenose dolphin community of Doubtful Sound features a large proportion of long‐lasting associations. Behavioral Ecology and Sociobiology, 54, 396 – 405. https://doi.org/10.1007/s00265-003-0651-y
dc.identifier.citedreferenceMaría, G. A., Boldman, K. G., & Van Vleck, L. D. ( 1993 ). Estimates of variances due to direct and maternal effects for growth traits of Romanov sheep. Journal of Animal Science, 71, 845 – 849. https://doi.org/10.2527/1993.714845x
dc.identifier.citedreferenceMcAdam, A. G., & Boutin, S. ( 2004 ). Maternal effects and the response to selection in red squirrels. Proceedings of the Royal Society B‐Biological Sciences, 271, 75 – 79. https://doi.org/10.1098/rspb.2003.2572
dc.identifier.citedreferenceMcAdam, A. G., Boutin, S., Sykes, A. K., & Humphries, M. M. ( 2007 ). Life histories of female red squirrels and their contributions to population growth and lifetime fitness. Ecoscience, 14, 362. https://doi.org/10.2980/1195-6860(2007)14[362:LHOFRS]2.0.CO;2
dc.identifier.citedreferenceMcAdam, A. G., Garant, D., & Wilson, A. J. ( 2014 ). The effects of others’ genes: Maternal and other indirect genetic effects. In A. Charmantier, D. Garant & L. E. B. Kruuk (Eds.), Quantitative genetics in the wild (pp. 84 – 103 ). Oxford, UK: Oxford University Press.
dc.identifier.citedreferenceMcFarlane, S. E., Gorrell, J. C., Coltman, D. W., Humphries, M. M., Boutin, S., & McAdam, A. G. ( 2015 ). The nature of nurture in a wild mammal’s fitness. Proceedings of the Royal Society B‐Biological Sciences, 282, 20142422 – 20142422. https://doi.org/10.1098/rspb.2014.2422
dc.identifier.citedreferenceMerilä, J., Sheldon, B. C., & Kruuk, L. E. ( 2001 ). Explaining stasis: Microevolutionary studies in natural populations. Genetica, 112–113, 199 – 222. https://doi.org/10.1023/A:1013391806317
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.