Show simple item record

Exploring the role of ectomycorrhizal fungi in soil carbon dynamics

dc.contributor.authorZak, Donald R.
dc.contributor.authorPellitier, Peter T.
dc.contributor.authorArgiroff, WilliamA.
dc.contributor.authorCastillo, Buck
dc.contributor.authorJames, Timothy Y.
dc.contributor.authorNave, Lucas E.
dc.contributor.authorAverill, Colin
dc.contributor.authorBeidler, Kaitlyn V.
dc.contributor.authorBhatnagar, Jennifer
dc.contributor.authorBlesh, Jennifer
dc.contributor.authorClassen, Aimée T.
dc.contributor.authorCraig, Matthew
dc.contributor.authorFernandez, Christopher W.
dc.contributor.authorGundersen, Per
dc.contributor.authorJohansen, Renee
dc.contributor.authorKoide, Roger T.
dc.contributor.authorLilleskov, Erik A.
dc.contributor.authorLindahl, Björn D.
dc.contributor.authorNadelhoffer, Knute J.
dc.contributor.authorPhillips, Richard P.
dc.contributor.authorTunlid, Anders
dc.date.accessioned2019-06-20T17:06:06Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-06-20T17:06:06Z
dc.date.issued2019-07
dc.identifier.citationZak, Donald R.; Pellitier, Peter T.; Argiroff, WilliamA.; Castillo, Buck; James, Timothy Y.; Nave, Lucas E.; Averill, Colin; Beidler, Kaitlyn V.; Bhatnagar, Jennifer; Blesh, Jennifer; Classen, Aimée T. ; Craig, Matthew; Fernandez, Christopher W.; Gundersen, Per; Johansen, Renee; Koide, Roger T.; Lilleskov, Erik A.; Lindahl, Björn D. ; Nadelhoffer, Knute J.; Phillips, Richard P.; Tunlid, Anders (2019). "Exploring the role of ectomycorrhizal fungi in soil carbon dynamics." New Phytologist 223(1): 33-39.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/149562
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.otherplant–fungal interactions
dc.subject.otherectomycorrhizal fungi
dc.subject.othernitrogen (N) acquisition
dc.subject.othersoil carbon (C) storage
dc.subject.othersoil organic matter (SOM)
dc.titleExploring the role of ectomycorrhizal fungi in soil carbon dynamics
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149562/1/nph15679_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149562/2/nph15679.pdf
dc.identifier.doi10.1111/nph.15679
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferencePritsch K, Garbaye J. 2011. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science 68: 25 – 32.
dc.identifier.citedreferenceMartin F, Kohler A, Murat C, Veneault‐Fourrey C, Hibbett DS. 2016. Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology 14: 760 – 773.
dc.identifier.citedreferenceMartino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, Barry KW, Cichocki N, Clum A, Dockter RB et al. 2018. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist 217: 1213 – 1229.
dc.identifier.citedreferenceMoore JAM, Jiang J, Post WM, Classen AT. 2015. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model. Ecosphere 6: 1 – 16.
dc.identifier.citedreferenceNannipieri P, Eldor P. 2009. The chemical and functional characterization of soil N and its biotic components. Soil Biology and Biochemistry 41: 2357 – 2369.
dc.identifier.citedreferenceNäsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytologist 182: 31 – 48.
dc.identifier.citedreferenceNewcomb CJ, Qafoku NP, Grate JW, Bailey V, De Yoreo JJ. 2017. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nature Communications 8: 396.
dc.identifier.citedreferenceNguyen NH, Smith D, Peay K, Kennedy P. 2015. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist 205: 1389 – 1393.
dc.identifier.citedreferenceNicolás C, Martin‐Bertelsen T, Floudas D, Bentzer J, Smits M, Johansson T, Troein C, Persson P, Tunlid A. 2019. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME Journal 13: 977 – 988.
dc.identifier.citedreferenceNorby RJ, De Kauwe MG, Walker AP, Werner C, Zaehle S, Zak DR. 2017. Comment on “Mycorrhizal association as a primary control of the CO 2 fertilization effect”. Science 355: 358.
dc.identifier.citedreferenceOp De Beeck M, Troein C, Peterson C, Persson P, Tunlid A. 2018. Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus. New Phytologist 218: 335 – 343.
dc.identifier.citedreferenceOrwin KH, Kirschbaum MU, St John MG, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment. Ecology Letters 14: 493 – 502.
dc.identifier.citedreferencePeay KG. 2014. Back to the future: natural history and the way forward in modern fungal ecology. Fungal Ecology 12: 4 – 9.
dc.identifier.citedreferencePeay KG, Matheny PB. 2016. The biogeography of ectomycorrhizal fungi – a history of life in the subterranean. In: Martin F, ed. Molecular mycorrhizal symbiosis. Hoboken, NJ, USA: John Wiley & Sons, 341 – 362.
dc.identifier.citedreferencePellitier PT, Zak DR. 2018. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytologist 217: 68 – 73.
dc.identifier.citedreferencePhillips LA, Ward V, Jones MD. 2014. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub‐boreal forests. ISME Journal 8: 699 – 713.
dc.identifier.citedreferencePhillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist 199: 41 – 51.
dc.identifier.citedreferencePhillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC. 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO 2. Ecology Letters 15: 1042 – 1049.
dc.identifier.citedreferenceRead DJ. 1991. Mycorrhizas in ecosystems. Experientia 47: 376 – 391.
dc.identifier.citedreferenceRillig MC, Caldwell BA, Wösten HA, Sollins P. 2007. Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85: 25 – 44.
dc.identifier.citedreferenceRineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Olsen PB, Persson P, Grell MN, Lindquist E et al. 2012. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown‐rot mechanism involving Fenton chemistry. Environmental Microbiology 14: 1477 – 1487.
dc.identifier.citedreferenceRineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, Troein C, Tunlid A. 2013. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME Journal 7: 2010 – 2022.
dc.identifier.citedreferenceRineau F, Stas J, Nguyen NH, Kuyper TW, Carleer R, Vangronsveld J, Colpaert JV, Kennedy PG. 2015. Soil organic nitrogen availability predicts ectomycorrhizal fungal protein degradation ability. Applied and Environmental Microbiology 82: 1391 – 1400.
dc.identifier.citedreferenceSchmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel‐Knabner I, Lehmann J, Manning DA et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478: 49 – 56.
dc.identifier.citedreferenceShah F, Nicolás C, Bentzer J, Ellström M, Smits M, Rineau F, Canbäck B, Floudas D, Carleer R, Lackner G et al. 2016. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist 209: 1705 – 1719.
dc.identifier.citedreferenceSinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42: 391 – 404.
dc.identifier.citedreferenceSmith GR, Finlay RD, Stenlid J, Vasaitis R, Menkis A. 2017. Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood‐decay basidiomycetes. New Phytologist 215: 747 – 755.
dc.identifier.citedreferenceSmith SE, Read DJ. 2008. Mycorrhizal symbiosis, 3 rd edn. London, UK: Academic Press.
dc.identifier.citedreferenceSteidinger B, Bhatnagar J, Vilgalys R, Taylor J, Bruns T, Peay KG. 2018. Global climate changes will lead to regionally divergent trajectories for ectomycorrhizal communities in North American Pinaceae forests. bioRxiv. doi: 10.1101/393009.
dc.identifier.citedreferenceSterkenburg E, Bahr A, Brandström Durling M, Clemmensen KE, Lindahl BD. 2015. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytologist 207: 1145 – 1158.
dc.identifier.citedreferenceSterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD. 2018. Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME Journal 12: 2187 – 2197.
dc.identifier.citedreferenceSulman BN, Brzostek ER, Medici C, Shevliakova E, Menge DN, Phillips RP. 2017. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association. Ecology Letters 20: 1043 – 1053.
dc.identifier.citedreferenceTalbot JM, Allison SD, Treseder KK. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology 22: 955 – 963.
dc.identifier.citedreferenceTalbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME et al. 2014. Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences, USA 111: 6341 – 6346.
dc.identifier.citedreferenceTedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco‐Palacios AM, Thu PQ, Suija A et al. 2014. Global diversity and geography of soil fungi. Science 346: 1256688.
dc.identifier.citedreferenceTedersoo L, Naadel T, Bahram M, Pritsch K, Buegger F, Leal M, Kõljalg U, Põldmaa K. 2012. Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytologist 195: 832 – 843.
dc.identifier.citedreferenceTedersoo L, Smith ME. 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27: 83 – 99.
dc.identifier.citedreferenceTerrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC. 2016. Mycorrhizal association as a primary control of the CO 2 fertilization effect. Science 353: 72 – 74.
dc.identifier.citedreferenceTerrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC. 2017. Ecosystem responses to elevated CO 2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytologist 217: 507 – 522.
dc.identifier.citedreferenceTorn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389: 170 – 173.
dc.identifier.citedreferenceWang T, Tian Z, Bengtson P, Tunlid A, Persson P. 2017. Mineral surface‐reactive metabolites secreted during fungal decomposition contribute to the formation of soil organic matter. Environmental Microbiology 19: 5117 – 5129.
dc.identifier.citedreferenceAgerer R. 2001. Exploration types of ectomycorrhizae. Mycorrhiza 11: 107 – 114.
dc.identifier.citedreferenceAverill C, Hawkes CV. 2016. Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters 19: 937 – 947.
dc.identifier.citedreferenceAverill C, Turner BL, Finzi AC. 2014. Mycorrhiza‐mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543 – 545.
dc.identifier.citedreferenceBaskaran P, Hyvönen R, Berglund SL, Clemmensen KE, Ågren GI, Lindahl BD, Manzoni S. 2017. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. New Phytologist 213: 1452 – 1465.
dc.identifier.citedreferenceBending GD, Read DJ. 1996. Nitrogen mobilization from protein‐polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biology and Biochemistry 28: 1603 – 1612.
dc.identifier.citedreferenceBödeker I, Clemmensen KE, Boer W, Martin F, Olson Å, Lindahl BD. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist 203: 245 – 256.
dc.identifier.citedreferenceBödeker I, Lindahl BD, Olson Å, Clemmensen KE. 2016. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Functional Ecology 30: 1967 – 1978.
dc.identifier.citedreferenceBrzostek ER, Rebel K, Smith KR, Phillips RP. 2017. Integrating mycorrhizae into global scale models: a journey toward relevance in the earth’s climate system. In: Johnson NC, Gehring C, Jansa J, eds. Mycorrhizal mediation of soil: fertility, structure, and carbon storage. Amsterdam, the Netherlands: Elsevier, 479‐499.
dc.identifier.citedreferenceCertano AD, Fernandez CW, Heckman KA, Kennedy PG. 2018. The afterlife effects of fungal morphology: contrasting decomposition rates between diffuse and rhizomorphic necromass. Soil Biology and Biochemistry 126: 76 – 81.
dc.identifier.citedreferenceClemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. 2013. Roots and associated fungi drive long‐term carbon sequestration in boreal forest. Science 339: 1615 – 1618.
dc.identifier.citedreferenceClemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. New Phytologist 205: 1525 – 1536.
dc.identifier.citedreferenceCraig ME, Turner BL, Liang C, Clay K, Johnson DJ, Phillips RP. 2018. Tree mycorrhizal type predicts within‐site variability in the storage and distribution of soil organic matter. Global Change Biology 24: 3317 – 3330.
dc.identifier.citedreferenceDoré J, Perraud M, Dieryckx C, Kohler A, Morin E, Henrissat B, Lindquist E, Zimmermann SD, Girard V, Kuo A et al. 2015. Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis. New Phytologist 208: 1169 – 1187.
dc.identifier.citedreferenceEkblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska‐Rokicka B, Kjøller R et al. 2013. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant and Soil 366: 1 – 27.
dc.identifier.citedreferenceFernandez CW, Kennedy PG. 2015. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytologist 209: 1382 – 1394.
dc.identifier.citedreferenceFernandez CW, Koide RT. 2014. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biology and Biochemistry 7: 150 – 157.
dc.identifier.citedreferenceFernandez CW, Langley JA, Chapman S, McCormack ML, Koide RT. 2016. The decomposition of ectomycorrhizal fungal necromass. Soil Biology and Biochemistry 93: 38 – 49.
dc.identifier.citedreferenceFranklin O, Näsholm T, Högberg P, Högberg MN. 2014. Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist 203: 657 – 666.
dc.identifier.citedreferenceGadgil RL, Gadgil PD. 1971. Mycorrhiza and litter decomposition. Nature 233: 133.
dc.identifier.citedreferenceGadgil RL, Gadgil PD. 1975. Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. New Zealand Journal of Forestry Science 5: 33 – 41.
dc.identifier.citedreferenceHagenbo A, Kyaschenko J, Clemmensen KE, Lindahl BD, Fransson P. 2018. Fungal community shifts underpin declining mycelial production and turnover across a Pinus sylvestris chronosequence. Journal of Ecology 106: 490 – 501.
dc.identifier.citedreferenceHarley JL. 1969. The biology of mycorrhiza, 2 nd edn. London, UK: Leonard Hill.
dc.identifier.citedreferenceHobbie EA, Agerer R. 2010. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant and Soil 327: 71 – 83.
dc.identifier.citedreferenceHögberg MN, Lehriones MJ, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T et al. 2010. Quantification of effects of season and nitrogen supply on tree below‐ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist 187: 485 – 493.
dc.identifier.citedreferenceJohnson NC, Angelard C, Sanders IR, Kiers ET. 2013. Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters 16: 140 – 153.
dc.identifier.citedreferenceKeller AB, Phillips RP. 2019. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests. New Phytologist 222: 554 – 562.
dc.identifier.citedreferenceKohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics 47: 410 – 415.
dc.identifier.citedreferenceKoide RT, Fernandez CW. 2018. The continuing relevance of “older” mycorrhiza literature: insights from the work of John Laker Harley (1911–1990). Mycorrhiza 28: 577 – 586.
dc.identifier.citedreferenceKyaschenko J, Clemmensen KE, Hagenbo A, Karltun E, Lindahl BD. 2017. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME Journal 11: 863 – 874.
dc.identifier.citedreferenceLeake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82: 1016 – 1045.
dc.identifier.citedreferenceLehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature 528: 60 – 68.
dc.identifier.citedreferenceLilleskov EA, Hobbie EA, Fahey TJ. 2002. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist 154: 219 – 231.
dc.identifier.citedreferenceLindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist 173: 611 – 620.
dc.identifier.citedreferenceLindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. New Phytologist 205: 1443 – 1447.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.