Show simple item record

Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) With Long‐Term GOES MAGED Measurements of keV Electron Fluxes at Geostationary Orbit

dc.contributor.authorGanushkina, N. Yu
dc.contributor.authorSillanpää, I.
dc.contributor.authorWelling, D.
dc.contributor.authorHaiducek, J.
dc.contributor.authorLiemohn, M.
dc.contributor.authorDubyagin, S.
dc.contributor.authorRodriguez, J. V.
dc.date.accessioned2019-06-20T17:06:28Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationGanushkina, N. Yu; Sillanpää, I. ; Welling, D.; Haiducek, J.; Liemohn, M.; Dubyagin, S.; Rodriguez, J. V. (2019). "Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) With Long‐Term GOES MAGED Measurements of keV Electron Fluxes at Geostationary Orbit." Space Weather 17(5): 687-708.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/149574
dc.description.abstractSurface charging by keV (kiloelectron Volt) electrons can pose a serious risk for satellites. There is a need for physical models with the correct and validated dynamical behavior. The 18.5‐month (2013–2015) output from the continuous operation online in real time as a nowcast of the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) is compared to the GOES 13 MAGnetospheric Electron Detector (MAGED) data for 40, 75, and 150 keV energies. The observed and modeled electron fluxes were organized by Magnetic Local Time (MLT) and IMPTAM driving parameters; the observed Interplanetary Magnetic Field (IMF) BZ, BY, and |B|; the solar wind speed VSW; the dynamic pressure PSW; and Kp and SYM‐H indices. The peaks for modeled fluxes are shifted toward midnight, but the ratio between the observed and modeled fluxes at around 06 MLT is close to 1. All the statistical patterns exhibit very similar features with the largest differences of about 1 order of magnitude at 18–24 MLT. Based on binary event analysis, 20–78% of threshold crossings are reproduced, but Heidke skill scores are low. The modeled fluxes are off by a factor of 2 in terms of the median symmetric accuracy. The direction of the error varies with energy: overprediction by 50% for 40 keV, overprediction by 2 for 75 keV, and underprediction by 18% for 150 keV. The revealed discrepancies are due to the boundary conditions developed for ions but used for electrons, absence of substorm effects, representations of electric and magnetic fields which can result in not enough adiabatic acceleration, and simple models for electron lifetimes.Key PointsIMPTAM performs well, with the ratio between the GOES MAGED and modeled keV electron fluxes at 06 MLT close to 1Peaks of IMPTAM fluxes are shifted toward midnight due to the background field models and the sources and losses used inside IMPTAMError is a factor of 2 based on median symmetric accuracy with largest difference of 1 order of magnitude; Heidke skill scores are low
dc.publisherWiley Periodicals, Inc.
dc.publisherEuropean Space Agency
dc.titleValidation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) With Long‐Term GOES MAGED Measurements of keV Electron Fluxes at Geostationary Orbit
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149574/1/swe20845_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149574/2/swe20845.pdf
dc.identifier.doi10.1029/2018SW002028
dc.identifier.sourceSpace Weather
dc.identifier.citedreferencePulkkinen, A., Rasttter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J., & Weigel, R. ( 2013 ). Community‐wide validation of Geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRidley, A. J., & Liemohn, M. W. ( 2002 ). A model‐derived storm time asymmetric ring current driven electric field description. Journal of Geophysical Research, 107, 1151. https://doi.org/10.1029/2001JA000051
dc.identifier.citedreferenceRoberts, C. S. ( 1965 ). On the relationship between the unidirectional and omnidirectional flux of trapped particles on a magnetic line of force. Journal of Geophysical Research, 70 ( 11 ), 2517 – 2527.
dc.identifier.citedreferenceRodriguez, J. V. ( 2014 ). GOES 13‐15 MAGE/PD pitch angles. Algorithm theoretical basis document, version 1.0, NOAA NESDIS NGDC. Retrieved from http://www.ngdc.noaa.gov/stp/satellite/goes/documentation.html
dc.identifier.citedreferenceRowland, W., & Weigel, R. S. ( 2012 ). Intracalibration of particle detectors on a three‐axis stabilized geostationary platform. Space Weather, 10, S11002. https://doi.org/10.1029/2012SW000816
dc.identifier.citedreferenceSarris, T. E., Li, X., Tsaggas, N., & Paschalidis, N. ( 2002 ). Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds. Journal of Geophysical Research, 107 ( A3 ), 1033. https://doi.org/10.1029/2001JA900166
dc.identifier.citedreferenceSchulz, M., & Lanzerotti, L. J. ( 1974 ). Particle diffusion in the radiation belts, Physics and Chemistry in Space (Vol. 7 ). New York: Springer‐Verlag.
dc.identifier.citedreferenceShprits, Y. Y., Meredith, N. P., & Thorne, R. M. ( 2007 ). Parameterization of radiation belt electron loss timescales due to interactions with chorus waves. Geophysical Research Letters, 34, L11110. https://doi.org/10.1029/2006GL029050
dc.identifier.citedreferenceSillanpää, I., Ganushkina, N. Y., Dubyagin, S., & Rodriguez, J. V. ( 2017 ). Electron fluxes at geostationary orbit from GOES MAGED data. Space Weather, 15, 1602 – 1614. https://doi.org/10.1002/2017SW001698
dc.identifier.citedreferenceSubbotin, D. A., & Shprits, Y. Y. ( 2009 ). Three‐dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. https://doi.org/10.1029/2008SW000452
dc.identifier.citedreferenceThomsen, M. F., Henderson, M. G., & Jordanova, V. K. ( 2013 ). Statistical properties of the surface‐charging environment at geosynchronous orbit. Space Weather, 11, 237 – 244. https://doi.org/10.1002/swe.20049
dc.identifier.citedreferenceThornes, J. E., & Stephenson, D. B. ( 2001 ). How to judge the quality and value of weather forecast products. Meteorological Applications, 8 ( 3 ), 307 – 314.
dc.identifier.citedreferenceTofallis, C. ( 2015 ). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66 ( 8 ), 1352 – 1362. https://doi.org/10.1057/jors.2014.103
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. Journal of Geophysical Research, 100 ( A4 ), 5599 – 5612.
dc.identifier.citedreferenceTsyganenko, N. A., & Andreeva, V. A. ( 2015 ). A forecasting model of the magnetosphere driven by an optimal solar wind coupling function. Journal of Geophysical Research: Space Physics, 120, 8401 – 8425. https://doi.org/10.1002/2015JA021641
dc.identifier.citedreferenceTsyganenko, N. A., & Andreeva, V. A. ( 2016 ). An empirical RBF model of the magnetosphere parameterized by interplanetary and ground‐based drivers. Journal of Geophysical Research: Space Physics, 121, 10,786 – 10,802. https://doi.org/10.1002/2016JA023217
dc.identifier.citedreferenceTsyganenko, N. A., & Mukai, T. ( 2003 ). Tail plasma sheet models derived from Geotail particle data. Journal of Geophysical Research, 108 ( A3 ), 1136.
dc.identifier.citedreferenceUsanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., Baker, D. N., Thaller, S. A., Reeves, G. D., Spence, H. E., Kletzing, C., & Wygant, J. ( 2014 ). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground‐based and Van Allen Probes observations. Geophysical Research Letters, 41, 1375 – 1381. https://doi.org/10.1002/2013GL059024
dc.identifier.citedreferenceWalther, B. A., & Moore, J. L. ( 2005 ). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28 ( 6 ), 815 – 829.
dc.identifier.citedreferenceWanliss, J. A., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: Dst versus SYM‐H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110, A05306. https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceWelling, D. T., & Ridley, A. J. ( 2010 ). Validation of SWMF magnetic field and plasma. Space Weather, 8, S03002. https://doi.org/10.1029/2009SW000494
dc.identifier.citedreferenceWilks, D. S. ( 2006 ). Statistical methods in the atmospheric sciences ( 2nd ed.). Academic Press. Retrieved from https://books.google.com/books/about/Statistical_Methods_in_the_Atmospheric_S.html?id=fxPiH9Ef9VoC&printsec=frontcover&source=kp_read_button#v=onepage&q&f=false
dc.identifier.citedreferenceAndreeva, V. A., & Tsyganenko, N. A. ( 2016 ). Reconstructing the magnetosphere from data using radial basis functions. Journal of Geophysical Research: Space Physics, 121, 2249 – 2263. https://doi.org/10.1002/2015JA022242
dc.identifier.citedreferenceBaker, D., Erickson, P. J., Fennell, J. F., Foster, J. C., Jaynes, A. N., & Verronen, P. T. ( 2018 ). Space weather effects in the Earth’s radiation belts. Space Science Reviews, 214, 17. https://doi.org/10.1007/s11214-017-0452-7
dc.identifier.citedreferenceBalch, C. C. ( 2008 ). Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather, 6, S01001. https://doi.org/10.1029/2007SW000337
dc.identifier.citedreferenceBalikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. ( 2011 ). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38, L18105. https://doi.org/10.1029/2011GL048980
dc.identifier.citedreferenceBalikhin, M. A., Rodriguez, J. V., Boynton, R. J., Walker, S. N., Aryan, H., Sibeck, D. G., & Billings, SA. ( 2016 ). Comparative analysis of NOAA REFM and SNB3GEO tools for the forecast of the fluxes of high energy electrons at GEO. Space Weather, 14, 22 – 31. https://doi.org/10.1002/2015SW001303
dc.identifier.citedreferenceBoyd, A. J., Spence, H. E., Huang, C.‐L., Reeves, G. D., Baker, D. N., Turner, D. L., Claudepierre, S. G., Fennell, J. F., Blake, J. B., & Shprits, Y. Y. ( 2016 ). Statistical properties of the radiation belt seed population. Journal of Geophysical Research: Space Physics, 121, 7636 – 7646. https://doi.org/10.1002/2016JA022652
dc.identifier.citedreferenceBoyle, C. B., Reiff, P. H., & Hairston, M. R. ( 1997 ). Empirical polar cap potentials. Journal of Geophysical Research, 102 ( A1 ), 111 – 125.
dc.identifier.citedreferenceBoynton, R. J., Balikhin, M. A., Sibeck, D. G., Walker, S. N., Billings, S. A., & Ganushkina, N. ( 2016 ). Electron flux models for different energies at geostationary orbit. Space Weather, 14, 846 – 860. https://doi.org/10.1002/2016SW001506
dc.identifier.citedreferenceBrautigam, D. H., & Albert, J. M. ( 2000 ). Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm. Journal of Geophysical Research, 105 ( A1 ), 291 – 309. https://doi.org/10.1029/1999JA900344
dc.identifier.citedreferenceChen, Y., Friedel, R. H. W., & Reeves, G. D. ( 2006 ). Phase space density distributions of energetic electrons in the outer radiation belt during two Geospace Environment Modeling Inner Magnetosphere/Storms selected storms. Journal of Geophysical Research, 111, A11S04. https://doi.org/10.1029/2006JA011703
dc.identifier.citedreferenceChen, Y., Reeves, G. D., & Friedel, R. H. W. ( 2007 ). The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Physics, 3, 614 – 617. https://doi.org/10.1038/nphys655
dc.identifier.citedreferenceChen, M. W., Schulz, M., Anderson, P. C., Lu, G., Germany, G., & West, M. ( 2005 ). Storm time distributions of diffuse auroral electron energy and X‐ray flux: Comparison of drift‐loss simulations with observations. Journal of Geophysical Research, 110, A03210. https://doi.org/10.1029/2004JA010725
dc.identifier.citedreferenceChen, M. W., Schulz, M., Lu, G., & Lyons, L. R. ( 2003 ). Quasi‐steady drift paths in a model magnetosphere with AMIE electric field: Implications for ring current formation. Journal of Geophysical Research, 108 ( A5 ), 1180. https://doi.org/10.1029/2002JA009584
dc.identifier.citedreferenceDavis, V. A., Mandell, M. J., & Thomsen, M. F. ( 2008 ). Representation of the measured geosynchronous plasma environment in spacecraft charging calculations. Journal of Geophysical Research, 113, A10204. https://doi.org/10.1029/2008JA013116
dc.identifier.citedreferenceDenton, M. H., Henderson, M. G., Jordanova, V. K., Thomsen, M. F., Borovsky, J. E., Woodroffe, J., Hartley, D. P., & Pitchford, D. ( 2016 ). An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions. Space Weather, 14, 511 – 523. https://doi.org/10.1002/2016SW001409
dc.identifier.citedreferenceDenton, M. H., Reeves, G. D., Larsen, B. A., Friedel, R. H. W., Thomsen, M. F., Fernandes, P. A., Skoug, R. M., Funsten, H. O., & Sarno‐Smith, L. K. ( 2017 ). On the origin of low‐energy electrons in the inner magnetosphere: Fluxes and pitch‐angle distributions. Journal of Geophysical Research: Space Physics, 122, 1789 – 1802. https://doi.org/10.1002/2016JA023648
dc.identifier.citedreferenceDenton, M. H., Thomsen, MF., Jordanova, V. K., Henderson, M. G., Borovsky, J. E., Denton, J. S., Pitchford, D., & Hartley, D. P. ( 2015 ). An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit. Space Weather, 13, 233 – 249. https://doi.org/10.1002/2015SW001168
dc.identifier.citedreferenceDoswell, C. A. III, Davies‐Jones, R., & Keller, D. L. ( 1990 ). On summary measures of skill in rare event forecasting based on contingency tables. Weather Forecasting, 5, 576 – 585.
dc.identifier.citedreferenceDubyagin, S., Ganushkina, N. Y., Sillanpää, I., & Runov, A. ( 2016 ). Solar wind‐driven variations of electron plasma sheet densities and temperatures beyond geostationary orbit during storm times. Journal of Geophysical Research: Space Physics, 121, 8343 – 8360. https://doi.org/10.1002/2016JA022947
dc.identifier.citedreferenceFennell, J. F., Koons, H. C., Roeder, J. L., & Blake, J. B. ( 2001 ). Spacecraft charging: Observations and relationship to satellite anomalies (Vol. 476 ). Noordwijk, Netherlands: European Space Agency.
dc.identifier.citedreferenceFok, M.‐C., Buzulukova, N. Y., Chen, S.‐H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The Comprehensive Inner Magnetosphere‐Ionosphere Model. Journal of Geophysical Research: Space Physics, 119, 7522 – 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceFok, M.‐C., Glocer, A., Zheng, Q., Horne, R. B., Meredith, N. P., Albert, J. M., & Nagai, T. ( 2011 ). Recent developments in the Radiation Belt Environment model. Journal of Atmospheric and Solar‐Terrestrial Physics, 73 ( 11 ), 1435 – 1443.
dc.identifier.citedreferenceFok, M.‐C., & Moore, T. E. ( 1997 ). Ring current modeling in a realistic magnetic field configuration. Geophysical Research Letters, 24 ( 14 ), 1775 – 1778.
dc.identifier.citedreferenceFok, M.‐C., Moore, T. E., & Delcourt, DC. ( 1999 ). Modeling of inner plasma sheet and ring current during substorms. Journal of Geophysical Research, 104 ( A7 ), 14,557 – 14,569.
dc.identifier.citedreferenceFok, M.‐C., Moore, T. E., Wilson, G. R., Perez, J. D., Zhang, X. X., Brandt, P. C., Mitchell, D. G., Roelof, E. C., Jahn, J.‐M., Pollock, C. J., & Wolf, R. A. ( 2003 ). Global ENA image simulations. Space Science Reviews, 109 ( 1 ), 77 – 103.
dc.identifier.citedreferenceFok, M.‐C., Wolf, R. A., Spiro, R. W., & Moore, T. E. ( 2001 ). Comprehensive computational model of Earth’s ring current. Journal of Geophysical Research, 106 ( A5 ), 8417 – 8424.
dc.identifier.citedreferenceFoster, J. C., Erickson, P. J., Omura, Y., Baker, D. N., Kletzing, C. A., & Claudepierre, S. G. ( 2017 ). Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. Journal of Geophysical Research: Space Physics, 122, 324 – 339. https://doi.org/10.1002/2016JA023429
dc.identifier.citedreferenceFriedel, R. H. W., Korth, H., Henderson, M. G., Thomsen, M. F., & Scudder, J. D. ( 2001 ). Plasma sheet access to the inner magnetosphere. Journal of Geophysical Research, 106 ( A4 ), 5845 – 5858.
dc.identifier.citedreferenceGanushkina, N. Y., Amariutei, O. A., Shprits, Y. Y., & Liemohn, M. W. ( 2013 ). Transport of the plasma sheet electrons to the geostationary distances. Journal of Geophysical Research: Space Physics, 118, 82 – 98. https://doi.org/10.1029/2012JA017923
dc.identifier.citedreferenceGanushkina, N. Y., Amariutei, O. A., Welling, D., & Heynderickx, D. ( 2015 ). Nowcast model for low‐energy electrons in the inner magnetosphere. Space Weather, 13, 16 – 34. https://doi.org/10.1002/2014SW001098
dc.identifier.citedreferenceShprits, Y. Y., Thorne, R. M., Horne, R. B., & Summers, D. ( 2006 ). Bounce‐averaged diffusion coefficients for field‐aligned chorus waves. Journal of Geophysical Research, 111, A10225. https://doi.org/10.1029/2006JA011725
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., Amariutei, O. A., & Pitchford, D. ( 2014 ). Low‐energy electrons (5–50 keV) in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 119, 246 – 259. https://doi.org/10.1002/2013JA019304
dc.identifier.citedreferenceGarrett, H. B. ( 1981 ). The charging of spacecraft surfaces. Reviews of Geophysics, 19 ( 4 ), 577 – 616.
dc.identifier.citedreferenceGlauert, S. A., Horne, R. B., & Meredith, N. P. ( 2014 ). Three‐dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusion models for chorus, plasmaspheric hiss, and lightning‐generated whistlers. Journal of Geophysical Research: Space Physics, 119, 268 – 289. https://doi.org/10.1002/2013JA019281
dc.identifier.citedreferenceGreen, J. C., & Kivelson, M. G. ( 2001 ). A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons. Journal of Geophysical Research, 106 ( A11 ), 25,777 – 25,791.
dc.identifier.citedreferenceGreen, J. C., & Kivelson, M. G. ( 2004 ). Relativistic electrons in the outer radiation belt: Differentiating between acceleration mechanisms. Journal of Geophysical Research, 109, A03213. https://doi.org/10.1029/2003JA010153
dc.identifier.citedreferenceHanser, F. A. ( 2011 ). EPS/HEPAD calibration and data handbook. Tech. Rep. GOESN‐ENG‐048D, Assurance Technology Corporation, Carlisle, MA. Retrieved from http://www.ngdc.noaa.gov/stp/satellite/goes/documentation.html
dc.identifier.citedreferenceHartley, D. P., Denton, M. H., Green, J. C., Onsager, T. G., Rodriguez, J. V., & Singer, H. J. ( 2013 ). Case studies of the impact of high‐speed solar wind streams on the electron radiation belt at geosynchronous orbit: Flux, magnetic field, and phase space density. Journal of Geophysical Research: Space Physics, 118, 6964 – 6979. https://doi.org/10.1002/2013JA018923
dc.identifier.citedreferenceHeidke, P. ( 1926 ). Berechnung Des Erfolges Und Der Gte Der Windstrkevorhersagen Im Sturmwarnungsdienst. Geografiska Annaler Nature, 8, 301 – 349.
dc.identifier.citedreferenceHorne, R. B., Thorne, R. M., Shprits, Y. Y., Meredith, N. P., Glauert, S. A., Smith, A. J., Kanekal, S. G., Baker, D. N., Engebretson, M. J., Posch, J. L., Spasojevic, M., Inan, U. S., Pickett, J. S., & Decreau, P. M. E. ( 2005 ). Wave acceleration of electrons in the Van Allen radiation belts. Nature, 437, 227 – 230. https://doi.org/10.1038/nature03939
dc.identifier.citedreferenceIucci, N., Levitin, A. E., Belov, A. V., Eroshenko, E. A., Ptitsyna, N. G., Villoresi, G., Chizhenkov, G. V., Dorman, L. I., Gromova, L. I., Parisi, M., Tyasto, M. I., & G., Y. V. ( 2005 ). Space weather conditions and spacecraft anomalies in different orbits. Space Weather, 3, S01001. https://doi.org/10.1002/2003SW000056
dc.identifier.citedreferenceJaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’aniu, T. M., Ali, A. F., Elkington, S. R., Li, X., Kanekal, S. G., Claudepierre, S. G., Fennell, J. F., Li, W., Thorne, R. M., Kletzing, C., Spence, H. E., & Reeves, G. D. ( 2015 ). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 120, 7240 – 7254. https://doi.org/10.1002/2015JA021234
dc.identifier.citedreferenceJolliffe, I. T., & Stephenson, D. B. (Eds.) ( 2012 ). Forecast verification, A practinioner’s guide in atmospheric science ( 2nd ed.). Wiley. Retrieved from https://www.wiley.com/en-us/Forecast+Verification%3A+A+Practitioner%27s+Guide+in+Atmospheric+Science%2C+2nd+Edition-p-9780470660713
dc.identifier.citedreferenceJordanova, V. K., Miyoshi, Y., & Geophysical Research Letters ( 2005 ). Relativistic model of ring current and radiation belt ions and electrons: Initial results, 32, L14104. https://doi.org/10.1029/2005GL023020
dc.identifier.citedreferenceJordanova, V. K., Yu, Y., Niehof, J. T., Skoug, R. M., Reeves, G. D., Kletzing, C. A., Fennell, J. F., & Spence, H. E. ( 2014 ). Simulations of inner magnetosphere dynamics with an expanded RAM‐SCB model and comparisons with Van Allen Probes observations. Geophysical Research Letters, 41, 2687 – 2694. https://doi.org/10.1002/2014GL059533
dc.identifier.citedreferenceKatus, R. M., & Liemohn, M. W. ( 2013 ). Similarities and differences in low‐ to middle‐latitude geomagnetic indices. Journal of Geophysical Research: Space Physics, 118, 5149 – 5156. https://doi.org/10.1002/jgra.50501
dc.identifier.citedreferenceKennel, C. F., & Petschek, H. E. ( 1966 ). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71 ( 1 ), 1 – 28.
dc.identifier.citedreferenceKennel, C. F., & Thorne, R. M. ( 1967 ). Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field. Journal of Geophysical Research, 72 ( 3 ), 871 – 878.
dc.identifier.citedreferenceKerns, K. J., Hardy, D. A., & Gussenhoven, M. S. ( 1994 ). Modeling of convection boundaries seen by CRRES in 120‐eV to 28‐keV particles. Journal of Geophysical Research, 99 ( A2 ), 2403 – 2414.
dc.identifier.citedreferenceKorth, H., Thomsen, M. F., Borovsky, J. E., & McComas, D. J. ( 1999 ). Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 104 ( A11 ), 25,047 – 25,061.
dc.identifier.citedreferenceLanzerotti, L. J., LaFleur, K., Maclennan, C. G., & Maurer, D. W. ( 1998 ). Geosynchronous spacecraft charging in January 1997. Geophysical Research Letters, 25 ( 15 ), 2967 – 2970.
dc.identifier.citedreferenceLeontaritis, I. J., & Billings, S. A. ( 1985a ). Input‐output parametric models for non‐linear systems part I: Deterministic non‐linear systems. International Journal of Control, 41 ( 2 ), 303 – 328.
dc.identifier.citedreferenceLeontaritis, I. J., & Billings, S. A. ( 1985b ). Input‐output parametric models for non‐linear systems part II: Stochastic non‐linear systems. International Journal of Control, 41 ( 2 ), 329 – 344.
dc.identifier.citedreferenceLi, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N., Spence, H. E., Reeves, G. D., Kanekal, S. G., Green, J. C., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Blake, J. B., Fennell, J. F., & Claudepierre, S. G. ( 2014 ). Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 119, 4681 – 4693. https://doi.org/10.1002/2014JA019945
dc.identifier.citedreferenceLiemohn, M. W., Khazanov, G. V., & Kozyra, J. U. ( 1998 ). Banded electron structure formation in the inner magnetosphere. Geophysical Research Letters, 25 ( 6 ), 877 – 880.
dc.identifier.citedreferenceLiemohn, M. W., Ridley, A. J., Gallagher, D. L., Ober, D. M., & Kozyra, J. U. ( 2004 ). Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the 17 April 2002 magnetic storm. Journal of Geophysical Research, 109, A03209. https://doi.org/10.1029/2003JA010304
dc.identifier.citedreferenceLopez, R. E., Hernandez, S., Wiltberger, M., Huang, C.‐L., Kepko, E. L., Spence, H., Goodrich, C. C., & Lyon, J. G. ( 2007 ). Predicting magnetopause crossings at geosynchronous orbit during the Halloween storms. Space Weather, 5, S01005. https://doi.org/10.1029/2006SW000222
dc.identifier.citedreferenceMatéo‐Vélez, J.‐C., Sicard, A., Payan, D., Ganushkina, N., Meredith, N. P., & Sillanpää, I. ( 2018 ). Spacecraft surface charging induced by severe environments at geosynchronous orbit. Space Weather, 16, 89 – 106. https://doi.org/10.1002/2017SW001689
dc.identifier.citedreferenceMauk, B. H., & Meng, C.‐I. ( 1983 ). Characterization of geostationary particle signatures based on the “Injection Boundary” Model. Journal of Geophysical Research, 88 ( A4 ), 3055 – 3071.
dc.identifier.citedreferenceMiyoshi, Y. S., Jordanova, V. K., Morioka, A., Thomsen, M. F., Reeves, G. D., Evans, D. S., & Green, J. C. ( 2006 ). Observations and modeling of energetic electron dynamics during the October 2001 storm. Journal of Geophysical Research, 111, A11S02. https://doi.org/10.1029/2005JA011351
dc.identifier.citedreferenceMorley, S. K. ( 2016 ). Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications. Tech. Rep. LA‐UR‐16‐24592). Los Alamos, NM: Los Alamos National Laboratory. https://doi.org/10.2172/1260362
dc.identifier.citedreferenceMorley, S. K., Brito, T. V., & Welling, D. T. ( 2018 ). Measures of model performance based on the log accuracy ratio. Space Weather, 16, 69 – 88. https://doi.org/10.1002/2017SW001669
dc.identifier.citedreferenceMurphy, A. H. ( 1993 ). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting, 8 ( 2 ), 281 – 293.
dc.identifier.citedreferenceO’Brien, T. P., & Space Weather ( 2009 ). SEAES‐GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit, 7, 09003. https://doi.org/10.1029/2009SW000473
dc.identifier.citedreferenceOrlova, K., & Shprits, Y. ( 2014 ). Model of lifetimes of the outer radiation belt electrons in a realistic magnetic field using realistic chorus wave parameters. Journal of Geophysical Research: Space Physics, 119, 770 – 780. https://doi.org/10.1002/2013JA019596
dc.identifier.citedreferenceOrlova, K., Shprits, Y., & Spasojevic, M. ( 2016 ). New global loss model of energetic and relativistic electrons based on Van Allen Probes measurements. Journal of Geophysical Research: Space Physics, 121, 1308 – 1314. https://doi.org/10.1002/2015JA021878
dc.identifier.citedreferenceReeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., Blake, J. B., Christensen, R. A., & Thomsen, D. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research, 116, A02213. https://doi.org/10.1029/2010JA015735
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.