Show simple item record

Ionophore‐Based Biphasic Chemical Sensing in Droplet Microfluidics

dc.contributor.authorWang, Xuewei
dc.contributor.authorSun, Meng
dc.contributor.authorFerguson, Stephen A.
dc.contributor.authorHoff, J. Damon
dc.contributor.authorQin, Yu
dc.contributor.authorBailey, Ryan C.
dc.contributor.authorMeyerhoff, Mark E.
dc.date.accessioned2019-06-20T17:06:32Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-06-20T17:06:32Z
dc.date.issued2019-06-11
dc.identifier.citationWang, Xuewei; Sun, Meng; Ferguson, Stephen A.; Hoff, J. Damon; Qin, Yu; Bailey, Ryan C.; Meyerhoff, Mark E. (2019). "Ionophore‐Based Biphasic Chemical Sensing in Droplet Microfluidics." Angewandte Chemie 131(24): 8176-8180.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/149576
dc.description.abstractDroplet microfluidics is an enabling platform for high‐throughput screens, single‐cell studies, low‐volume chemical diagnostics, and microscale material syntheses. Analytical methods for real‐time and in situ detection of chemicals in the droplets will benefit these applications, but they remain limited. Reported herein is a novel heterogeneous chemical sensing strategy based on functionalization of the oil phase with rationally combined sensing reagents. Sub‐nanoliter oil segments containing pH‐sensitive fluorophores, ionophores, and ion‐exchangers enable highly selective and rapid fluorescence detection of physiologically important electrolytes (K+, Na+, and Cl−) and polyions (protamine) in sub‐nanoliter aqueous droplets. Electrolyte analysis in whole blood is demonstrated without suffering from optical interference from the sample matrix. Moreover, an oil phase doped with an aza‐BODIPY dye allows indication of H2O2 in the aqueous droplets, exemplifying sensing of targets beyond ionic species.Die Ölphase in einem Tröpfchenmikrofluidiksystem wird mit rational kombinierten Sensoreagenzien funktionalisiert. Auf diese Weise werden die Ölsegmente zu chemischen Sensoren für spezifische Analyte in wässrigen Tröpfchen. Diese biphasische Sensorplattform ermöglicht die Detektion eines breiten Spektrums von Analyten, einschließlich ionischer, polyionischer und nichtionischer Spezies.
dc.publisherWiley
dc.subject.otherSensoren
dc.subject.otherTröpfchenmikrofluidik
dc.subject.otherMolekulare Erkennung
dc.subject.otherIonophore
dc.subject.otherAnalysemethoden
dc.titleIonophore‐Based Biphasic Chemical Sensing in Droplet Microfluidics
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149576/1/ange201902960.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149576/2/ange201902960-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149576/3/ange201902960_am.pdf
dc.identifier.doi10.1002/ange.201902960
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceT. Guinovart, D. Hernández-Alonso, L. Adriaenssens, P. Blondeau, M. Martínez-Belmonte, F. X. Rius, F. J. Andrade, P. Ballester, Angew. Chem. Int. Ed. 2016, 55, 2435 – 2440; Angew. Chem. 2016, 128, 2481 – 2486;
dc.identifier.citedreferenceJ. Zhai, T. Pan, J. Zhu, Y. Xu, J. Chen, Y. Xie, Y. Qin, Anal. Chem. 2012, 84, 10214 – 10220;
dc.identifier.citedreferenceS. Abalde-Cela, A. Gould, X. Liu, E. Kazamia, A. G. Smith, C. Abell, J. R. Soc. Interface 2015, 12, 20150216.
dc.identifier.citedreferenceN. Shembekar, H. Hu, D. Eustace, C. A. Merten, Cell Rep. 2018, 22, 2206 – 2215.
dc.identifier.citedreferenceA. T. H. Hsieh, P. J. H. Pan, A. P. Lee, Microfluid. Nanofluid. 2009, 6, 391 – 401.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. W. Jones, H. W. Gibson, J. Am. Chem. Soc. 2003, 125, 7001 – 7004;
dc.identifier.citedreferenceM. J. Langton, C. J. Serpell, P. D. Beer, Angew. Chem. Int. Ed. 2016, 55, 1974 – 1987; Angew. Chem. 2016, 128, 2012 – 2026.
dc.identifier.citedreferenceP. Buhlmann, L. D. Chen in Supramolecular Chemistry: From Molecules to Nanomaterials (Eds.: J. W. Steed, P. Gale ), Wiley, New York, 2012, pp.  2539 – 2579.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. Bakker, P. Bulhmann, E. Pretsch, Chem. Rev. 1997, 97, 3083 – 3132;
dc.identifier.citedreferenceX. Xie, E. Bakker, Anal. Bioanal. Chem. 2015, 407, 3899 – 3910.
dc.identifier.citedreferenceZ. Han, Y. Y. Chang, S. W. Au, B. Zheng, Chem. Commun. 2012, 48, 1601 – 1603.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Bamsey, A. Berinstain, M. Dixon, Anal. Chim. Acta 2012, 737, 72 – 82;
dc.identifier.citedreferenceN. Ye, K. Wygladacz, E. Bakker, Anal. Chim. Acta 2007, 596, 195 – 200.
dc.identifier.citedreferenceX. Xie, J. Zhai, G. A. Crespo, E. Bakker, Anal. Chem. 2014, 86, 8770 – 8775.
dc.identifier.citedreferenceH. Hisamoto, T. Horiuchi, M. Tokeshi, A. Hibara, T. Kitamori, Anal. Chem. 2001, 73, 1382 – 1386.
dc.identifier.citedreferenceH. Song, D. L. Chen, R. F. Ismagilov, Angew. Chem. Int. Ed. 2006, 45, 7336 – 7356; Angew. Chem. 2006, 118, 7494 – 7516.
dc.identifier.citedreferenceH. Song, H. W. Li, M. S. Munson, T. G. Van Ha, R. F. Ismagilov, Anal. Chem. 2006, 78, 4839 – 4849.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Ampurdanés, G. A. Crespo, A. Maroto, M. A. Sarmentero, P. Ballester, F. X. Rius, Biosens. Bioelectron. 2009, 25, 344 – 349.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. E. Meyerhoff, B. Fu, E. Bakker, J. H. Yun, V. C. Yang, Anal. Chem. 1996, 68, 168A – 175A;
dc.identifier.citedreferenceS. B. Kim, T. Y. Kang, H. C. Cho, M. H. Choi, G. S. Cha, H. Nam, Anal. Chim. Acta 2001, 439, 47 – 53;
dc.identifier.citedreferenceX. Wang, M. Mahoney, M. E. Meyerhoff, Anal. Chem. 2017, 89, 12334 – 12341;
dc.identifier.citedreferenceS. A. Ferguson, M. E. Meyerhoff, Sens. Actuators B 2018, 272, 643 – 654.
dc.identifier.citedreference 
dc.identifier.citedreferenceX. Wang, Z. Ding, Q. Ren, W. Qin, Anal. Chem. 2013, 85, 1945 – 1950;
dc.identifier.citedreferenceX. Wang, D. Yue, E. Lv, L. Wu, W. Qin, Anal. Chem. 2014, 86, 1927 – 1931;
dc.identifier.citedreferenceY. Liu, J. Zhu, Y. Xu, Y. Qin, D. Jiang, ACS Appl. Mater. Interfaces 2015, 7, 11141 – 11145.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Y. Teh, R. Lin, L. H. Hung, A. P. Lee, Lab Chip 2008, 8, 198 – 220;
dc.identifier.citedreferenceM. T. Guo, A. Rotem, J. A. Heyman, D. A. Weitz, Lab Chip 2012, 12, 2146 – 2155;
dc.identifier.citedreferenceL. R. Shang, Y. Cheng, Y. J. Zhao, Chem. Rev. 2017, 117, 7964 – 8040.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. Mary, V. Studer, P. Tabeling, Anal. Chem. 2008, 80, 2680 – 2687;
dc.identifier.citedreferenceS. Mashaghi, A. M. Van Oijen, Sci. Rep. 2015, 5, 11837.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Zhu, Q. Fang, Anal. Chim. Acta 2013, 787, 24 – 35;
dc.identifier.citedreferenceE. Y. Basova, F. Foret, Analyst 2015, 140, 22 – 38;
dc.identifier.citedreferenceA. Kalantarifard, A. Saateh, C. Elbuken, Chemosensors 2018, 6, 23.
dc.identifier.citedreferenceA. Huebner, L. F. Olguin, D. Bratton, G. Whyte, W. T. S. Huck, A. J. De Mello, J. B. Edel, C. Abell, F. Hollfelder, Anal. Chem. 2008, 80, 3890 – 3896.
dc.identifier.citedreferenceS. L. Sjostrom, H. N. Joensson, H. A. Svahn, Lab Chip 2013, 13, 1754 – 1761.
dc.identifier.citedreferenceB. L. Wang, A. Ghaderi, H. Zhou, J. Agresti, D. A. Weitz, G. R. Fink, G. Stephanopoulos, Nat. Biotechnol. 2014, 32, 473 – 478.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.