Show simple item record

Metal Toxicity During Short‐Term Sediment Resuspension and Redeposition in a Tropical Reservoir

dc.contributor.authorCervi, Eduardo Cimino
dc.contributor.authorHudson, Michelle
dc.contributor.authorRentschler, Alison
dc.contributor.authorBurton, G. Allen
dc.date.accessioned2019-07-03T19:55:48Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-07-03T19:55:48Z
dc.date.issued2019-07
dc.identifier.citationCervi, Eduardo Cimino; Hudson, Michelle; Rentschler, Alison; Burton, G. Allen (2019). "Metal Toxicity During Short‐Term Sediment Resuspension and Redeposition in a Tropical Reservoir." Environmental Toxicology and Chemistry 38(7): 1476-1485.
dc.identifier.issn0730-7268
dc.identifier.issn1552-8618
dc.identifier.urihttps://hdl.handle.net/2027.42/149673
dc.description.abstractBillings Complex is the largest water‐storage reservoir in São Paulo, Brazil, and has been contaminated since the 1960s. Periodically, Billings sediments are subjected to currents causing resuspension and subsequent release of metals. A short‐term (4‐h) resuspension was simulated using sediment flux exposure chambers (SeFECs) to better understand the fate, bioavailability, and transport of iron (Fe), manganese (Mn), and zinc (Zn) during these events, as well as possible organism toxicity. Daphnia magna and Hyalella azteca were exposed during the 4‐h resuspension, and were monitored after exposure for survival, growth, and reproduction. Resuspension rapidly deoxygenated the overlying water, decreased the pH, and resulted in elevated dissolved Zn above the US Environmental Protection Agency’s (2002) criteria for acute toxicity (120 µg L–1). However, Zn was scavenged (after 20 h) from solution as new sorption sites formed. Dissolved Mn increased during and after resuspension, with maximum values at 20 h post exposure. An initial release of Fe occurred, likely associated with oxidation of acid‐volatile sulfides, but decreased after 1 h of resuspension. The Fe decrease is likely due to precipitation as oxyhydroxides. No acute toxicity was observed during resuspension; however, mortality of D. magna and H. azteca occurred during the postexposure period. Daphnia magna also exhibited chronic toxicity, with decreased neonate production after exposure. This sublethal effect could lead to decreased zooplankton populations over a longer period in the reservoir. Environ Toxicol Chem 2019;38:1476–1485. © 2019 SETACConceptual model of metal (Me) speciation under different sediment redox states. During bedded conditions (A) metals are mainly bounded as insoluble sulfides or associated with organic carbon (OC). When resuspended (B), sulfide species are oxidized, mobilizing metals (such as Zn) into the overlying water (OW). However, the mobilized metal is scavenged by OC and freshly‐precipitated FexOx. As particles redeposit (C), and are returned to the benthic environment, further oxidation can occur in the aerobic sediment layer releasing Fe. High dissolved Fe concentrations in OW caused acute and chronic toxicity to D. magna. Ingestion of Zn caused growth inhibition and mortality to H. azteca.
dc.publisherAmerican Chemical Society
dc.publisherWiley Periodicals, Inc.
dc.subject.otherWater quality criteria
dc.subject.otherAcid‐volatile sulfide
dc.subject.otherMetal bioavailability
dc.subject.otherSediment toxicity
dc.subject.otherTropical ecotoxicology
dc.titleMetal Toxicity During Short‐Term Sediment Resuspension and Redeposition in a Tropical Reservoir
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149673/1/etc4434_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149673/2/etc4434.pdf
dc.identifier.doi10.1002/etc.4434
dc.identifier.sourceEnvironmental Toxicology and Chemistry
dc.identifier.citedreferenceSilvério PF, Fonseca AL, Botta‐Paschoal CMR, Mozeto AA. 2005. Release, bioavailability and toxicity of metals in lacustrine sediments: A case study of reservoirs and lakes in Southeast Brazil. Aquat Ecosyst Health Manag 8: 313 – 322.
dc.identifier.citedreferenceKubitz JA, Besser JM, Giesy JP. 1996. A two‐step experimental design for a sediment bioassay using growth of amphipod Hyalella azteca for the test endpoint. Environ Toxicol Chem 15: 1783 – 1792.
dc.identifier.citedreferenceKwok KWH, Leung KMY, Lui GSG, Chu VKH, Lam PKS, Morritt D, Maltby L, Brock TCM, Van den Brink PJ, Warne MSJ, Crane M. 2007. Comparison of tropical and temperate freshwater species sensitivities to chemicals: Implications for deriving safe extrapolation factors. Integr Environ Assess Manag 3: 49 – 67.
dc.identifier.citedreferenceLacher TE Jr, Goldstein MI. 1997. Tropical ecotoxicology: Status and needs. Environ Toxicol Chem 16: 100 – 111.
dc.identifier.citedreferenceLuther GW, Ma S, Trouwborst R, Glazer B, Blickley M, Scarborough RW, Mensinger MG. 2004. The roles of anoxia, H 2 S, and storm events in fish kills of dead‐end canals of Delaware inland bays. Estuaries 27: 551 – 560.
dc.identifier.citedreferenceMuyssen BTA, De Schamphelaere KAC, Janssen CR. 2006. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat Toxicol 77: 393 – 401.
dc.identifier.citedreferenceNedrich SM, Burton GA Jr. 2017. Sediment Zn‐release during post‐drought re‐flooding: Assessing environmental risk to Hyalella azteca and Daphnia magna. Environ Pollut 230: 1116 – 1124.
dc.identifier.citedreferenceNguyen LTH, Burton GA Jr, Schlekat CE, Janssen CR. 2011. Field measurement of nickel sediment toxicity: Role of acid volatile sulfide. Environ Toxicol Chem 30: 162 – 172.
dc.identifier.citedreferencePourabadehei M, Mulligan CN. 2016. Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ Pollut 213: 63 – 75.
dc.identifier.citedreferenceRichards CM, van Puffelen JL, Pallud C. 2018. Effects of sediment resuspension on the oxidation of acid‐volatile sulfides and release of metals (iron, manganese, zinc) in Pescadero Estuary (CA, USA). Environ Toxicol Chem 37: 993 – 1006.
dc.identifier.citedreferenceRico A, Waichman AV, Geber‐Corrêa R, van den Brink P. 2011. Effects of malathion and carbendazim on Amazonian freshwater organisms: Comparison of tropical and temperate species sensitivity distributions. Ecotoxicology 20: 625 – 634.
dc.identifier.citedreferenceRoberts DA. 2012. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environ Int 40: 230 – 243.
dc.identifier.citedreferenceSaulnier I, Mucci A. 2000. Trace metal remobilization following the resuspension of estuarine sediment: Saguenay Fjord, Canada. Appl Geochem 15: 191 – 210.
dc.identifier.citedreferenceSimpson SL, Spadaro DA. 2016. Bioavailability and chronic toxicity of metal sulfide minerals to benthic marine invertebrates: Implications for deep sea exploration, mining and tailings disposal. Environ Sci Technol 50: 4061 – 4070.
dc.identifier.citedreferenceSimpson SL, Apte SC, Batley GE. 2000. Effect of short‐term resuspension events on the oxidation of cadmium, lead, and zinc sulfide phases in anoxic estuarine sediments. Environ Sci Technol 34: 4533 – 4537.
dc.identifier.citedreferenceSimpson SL, Batley GE, Chariton AA, Stauber JL, King CK, Chapman JC, Hyne RV, Gale SA, Roach AC, Maher WA. 2005. Handbook for Sediment Quality Assessment Commonwealth Scientific and Industrial Research Organisation, Bangor, NSW, Australia
dc.identifier.citedreferenceSlotten DG, Reuter JE. 1995. Heavy metals in intact and resuspended sediments of a California reservoir, with emphasis on potential bioavailability of copper and zinc. Mar Freshw Res 46: 257 – 265.
dc.identifier.citedreferenceSposito G. 2008. The Chemistry of Soils ( 2nd ed ). Oxford University, New York, NY, USA
dc.identifier.citedreferenceUS Environmental Protection Agency. 1991. Compendium of ERT toxicity testing procedures. EPA 540/P‐91/009. Technical Report. Washington, DC.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2016. National recommended water quality criteria ‐ Aquatic life criteria. [cited 2019 May 7]. Available at http://www.epa.gov/wqc/national‐recommended‐water‐quality‐criteriaaquatic‐life‐criteria‐table.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2002. National recommended water quality criteria: 2002. EPA 822/R‐02/047. Technical Report. Washington, DC.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2007a. Method 8270D: Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). Washington, DC.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2007b. Method 8081B: Organochlorine pesticides by gas chromatography Washington, DC.
dc.identifier.citedreferenceVarol M, Şen B. 2012. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. Catena 92: 1 – 10.
dc.identifier.citedreferenceWang Z, Knok KWH, Leung KMY. 2019. Comparison of temperate and tropical freshwater species’ acute sensitivities to chemicals: An update. Integr Environ Assess Manag https://doi.org/10.1002/ieam.4122
dc.identifier.citedreferenceAtkinson C, Jolley R, Simpson S. 2007. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69: 1428 – 1437.
dc.identifier.citedreferenceBrinkman SF, Johnston WD. 2008. Acute toxicity of aqueous copper, cadmium, and zinc to the mayfly Rhithrogena hageni. Arch Environ Contam Toxicol 54: 466 – 472.
dc.identifier.citedreferenceBurton ED, Bush RT, Sullivan LA. 2006. Acid‐volatile sulfide oxidation in coastal flood plain drains: Iron‐sulfur cycling and effects on water quality. Environ Sci Technol 40: 1217 – 1222.
dc.identifier.citedreferenceBurton GA, Johnston EL. 2010. Assessing contaminated sediments in the context of multiple stressors. Environ Toxicol Chem 29: 2625 – 2643.
dc.identifier.citedreferenceCaetano M, Madureira M, Vale C. 2003. Metal remobilisation during resuspension of anoxic contaminated sediment: Short‐term laboratory study. Water Air Soil Pollut 143: 23 – 40.
dc.identifier.citedreferenceCaille N, Tiffreau C, Leyval C, Morel JL. 2003. Solubility of metals in an anoxic sediment during prolonged aeration. Sci Total Environ 301: 239 – 250.
dc.identifier.citedreferenceCalmano W, Hong J, Forstner U. 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28: 223 – 235.
dc.identifier.citedreferenceCalmano W, Forstner U, Hong J. 1994. Mobilization and scavenging of heavy metals following resuspension of anoxic sediments from the Elbe River’. In Alpers C, & Blowes D eds, Environmental Geochemistry of Sulfide Oxidation. American Chemical Society, Washington, DC, USA. pp 298 – 321.
dc.identifier.citedreferenceCantwell MG, Burgess RM, Kester DR. 2002. Release and phase partitioning of metals from anoxic estuarine sediments during periods of simulated resuspension. Environ Sci Technol 36: 5328 – 5334.
dc.identifier.citedreferenceCarvalho PSM, Zanardi E, Buratini SV, Lamparelli MC, Martins MC. 1998. Oxidizing effect on metal remobilization and Daphnia similis toxicity from a Brazilian reservoir sediment suspension. Water Res 32: 193 – 199.
dc.identifier.citedreferenceCastillo LE, de la Cruz E, Ruepert C. 1997. Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environ Toxicol Chem 16: 41 – 51.
dc.identifier.citedreferenceCervi EC, Fernandes F, Miranda RB, Mauad FF, Michalovicz L, Poleto C. 2017. Geochemical speciation and risk assessment of metals in sediments of the Lobo‐Broa Reservoir, Brazil. Manag Environ Qual Int J 28: 430 – 443.
dc.identifier.citedreferenceCharriau A, Lesven L, Gao Y, Leermakers M, Baeyens W, Ouddane B, Billon G. 2011. Trace metal behavior in riverine sediments: Role of organic matter and sulfides. Appl Geochem 26: 80 – 90.
dc.identifier.citedreferenceCosta ACS, Bigham JM, Tormena CA, Pintro JC. 2004. Clay mineralogy and cation exchange capacity of Brazilian soils from water contents determined by thermal analysis. Thermochim Acta 413: 73 – 79.
dc.identifier.citedreferenceDaam MA, Van den Brink PJ. 2010. Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology 19: 24 – 37.
dc.identifier.citedreferenceDe Jonge M, Teuchies J, Meire P, Blust R, Bervoets L. 2012. The impact of increased oxygen conditions on metal‐contaminated sediments. Part I: Effects on redox status, sediment geochemistry and metal bioavailability. Water Res 46: 2205 – 2214.
dc.identifier.citedreferenceDuman F, Aksoy A, Demirezen D. 2007. Seasonal variability of heavy metals in surface sediment of Lake Sapanca, Turkey. Environ Monit Assess 133: 277 – 283.
dc.identifier.citedreferenceDurán I, Sánchez‐Marín P, Beiras R. 2012. Dependence of Cu, Pb and Zn remobilization on physicochemical properties of marine sediments. Mar Environ Res 77: 43 – 49.
dc.identifier.citedreferenceEggleston MR. 2012. Impact of sediment resuspension events on the availability of heavy metals in freshwater sediments. University of Michigan, Ann Arbor, MI, USA. Master’s thesis
dc.identifier.citedreferenceEggleton J, Thomas KV. 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30: 973 – 980.
dc.identifier.citedreferenceFetters KJ, Costello DM, Hammerschmidt CR, Burton GA Jr. 2016. Toxicological effects of short‐term resuspension of metal‐contaminated freshwater and marine sediments. Environ Toxicol Chem 35: 676 – 686.
dc.identifier.citedreferenceGerringa LJA. 1990. Aerobic degradation of organic matter and the mobility of Cu, Cd, Pb, Ni, Zn, Fe and Mn in marine sediment slurries. Mar Chem 29: 355 – 374.
dc.identifier.citedreferenceHill NA, Simpson SL, Johnston EL. 2013. Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata. Environ Pollut 173: 182 – 191.
dc.identifier.citedreferenceHong YS, Kinney KA, Reible DD. 2011. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: Laboratory experiment and model development. Environ Toxicol Chem 30: 564 – 575.
dc.identifier.citedreferenceJones‐Lee A, Lee G. 2005. Role of iron chemistry in controlling the release of pollutants from resuspended sediments. Remediation 16: 33 – 41.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.