Show simple item record

Nicheâ based processes outperform neutral processes when predicting distance decay in coâ dominance along the Amazon â Andes rainforest gradient

dc.contributor.authorTrujillo, Ledy N.
dc.contributor.authorGranzow‐de La Cerda, Íñigo
dc.contributor.authorPardo, Iker
dc.contributor.authorMacía, Manuel J.
dc.contributor.authorCala, Victoria
dc.contributor.authorArellano, Gabriel
dc.date.accessioned2019-07-03T19:56:24Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-07-03T19:56:24Z
dc.date.issued2019-07
dc.identifier.citationTrujillo, Ledy N.; Granzow‐de La Cerda, Íñigo ; Pardo, Iker; Macía, Manuel J. ; Cala, Victoria; Arellano, Gabriel (2019). "Nicheâ based processes outperform neutral processes when predicting distance decay in coâ dominance along the Amazon â Andes rainforest gradient." Journal of Vegetation Science (4): 644-653.
dc.identifier.issn1100-9233
dc.identifier.issn1654-1103
dc.identifier.urihttps://hdl.handle.net/2027.42/149700
dc.description.abstractQuestionDispersal limitation (neutral hypothesis) and deterministic factors (niche hypothesis) shape floristic gradients including betweenâ site patterns of speciesâ dominance (coâ dominance). Because their relative importance remains poorly known, we ask how their comparative contribution to coâ dominance changes with elevation and geographical extent.LocationMadidi region, NW Bolivia.MethodsWe analysed floristic composition and environmental factors of 90 plots spanning the gradient from Amazonian (<1,000 m) to montane forests at three elevations (1,200â 1,500; 2,000â 2,300; and 2,800â 3,200 m) and two geographical extents: local (plots <12 km apart) and regional (38â 120 km apart). We modelled distance decay within each elevational band with a neutral model, using two parameters (speciation rate and dispersal distance). Subsequently, we related the model’s residuals to environmental differences using flexible machine learning models.ResultsWe found that 5â 44% of the variability in floristic differences along the gradient studied can be explained by a neutral model of distance decay, while 18â 50% can be explained by environmental differences. Montane forests showed an overall gradient in floristic composition that is congruent with an increase in elevation for both dispersal limitation and environmental filtering. However, Amazonian forest was more nicheâ structured and more dispersalâ limited relative to its elevation and topography.ConclusionsEnvironmental differences explained floristic differences better than the neutral model, even giving preferential attribution to the more parsimonious neutral processes.We analysed 90 tree communities spanning the longest forested elevational gradient on Earth: the extraordinarily diverse Amazonian and Andean forests of the Madidi region (Bolivia). Dominant species vary more with greater barriers to dispersal and stronger environmental changes, increasingly so at higher elevations. Amazonian dominant species, however, change more than expected at their elevation and topography.
dc.publisherPrinceton University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherneutral theory
dc.subject.otherniche partitioning
dc.subject.otheroligarchy hypothesis
dc.subject.otherspecies coâ dominance
dc.subject.otherAndes
dc.subject.othertropical montane forests
dc.subject.otherAmazon
dc.subject.otherspecies turnover
dc.subject.otherBolivia
dc.subject.otherenvironmental determinism
dc.subject.otherMadidi
dc.titleNicheâ based processes outperform neutral processes when predicting distance decay in coâ dominance along the Amazon â Andes rainforest gradient
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149700/1/jvs12761-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149700/2/jvs12761-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149700/3/jvs12761.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149700/4/jvs12761_am.pdf
dc.identifier.doi10.1111/jvs.12761
dc.identifier.sourceJournal of Vegetation Science
dc.identifier.citedreferenceMulligan, M. ( 2006 ). Global gridded 1 km TRMM rainfall climatology and derivatives. Version 1.0. Database: http://www.ambiotek.com/1kmrainfall
dc.identifier.citedreferenceHubbell, S. P. ( 2001 ). The unified neutral theory of biodiversity and biogeography. Monographs in Population Biology, Vol. 32. Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceHubbell, S. P. ( 2006 ). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387 â 1398. https://doi.org/10.1890/0012-9658(2006 ) 87[1387:NTATEO]2.0.CO;2
dc.identifier.citedreferenceHutter, C. R., Guayasamin, J. M., & Wiens, J. J. ( 2013 ). Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecology Letters, 16, 1135 â 1144. https://doi.org/10.1111/ele.12148
dc.identifier.citedreferenceJansen, S., Broadley, M. R., Robbrecht, E., & Smets, E. ( 2002 ). Aluminum hyperaccumulation in angiosperms: A review of its phylogenetic significance. Botanical Review, 68, 235 â 269. https://doi.org/10.1663/0006-8101(2002)068[0235:AHIAAR]2.0.CO;2
dc.identifier.citedreferenceJones, M. M., Tuomisto, H., Borcard, D., Legendre, P., Clark, D. B., & Olivas, P. C. ( 2008 ). Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 155, 593 â 604. https://doi.org/10.1007/s00442-007-0923-8
dc.identifier.citedreferenceRoyal Botanic Gardens Kew ( 2008 ). Seed Information Database (SID). Version 7.1. Retrieved from http://data.kew.org/sid/
dc.identifier.citedreferenceKozak, K. H., & Wiens, J. J. ( 2010 ). Niche conservatism drives elevational diversity patterns in Appalachian salamanders. American Naturalist, 176, 40 â 54. https://doi.org/10.1086/653031
dc.identifier.citedreferenceKristiansen, T., Svenning, J.â C., Eiserhardt, W. L., Pedersen, D., Brix, H., Munch Kristiansen, S., â ¦ Balslev, H. ( 2012 ). Environment versus dispersal in the assembly of western Amazonian palm communities. Journal of Biogeography, 39, 1318 â 1332. https://doi.org/10.1111/j.1365-2699.2012.02689.x
dc.identifier.citedreferenceLipton, P. ( 2003 ). Inference to the best explanation, 2nd ed. London, UK: Routledge. https://doi.org/10.4324/9780203470855
dc.identifier.citedreferenceMacía, M. J. ( 2008 ). Woody plants diversity, floristic composition and land use history in the Amazonian rain forests of Madidi National Park, Bolivia. Biodiversity and Conservation, 17, 2671 â 2690. https://doi.org/10.1007/s10531-008-9348-x
dc.identifier.citedreferenceMacía, M. J., Ruokolainen, K., Tuomisto, H., Quisbert, J., & Cala, V. ( 2007 ). Congruence between floristic patterns of trees and lianas in a southwest Amazonian rain forest. Ecography, 30, 561 â 577. https://doi.org/10.1111/j.2007.0906-7590.05124.x
dc.identifier.citedreferenceMacía, M. J., & Svenning, J.â C. ( 2005 ). Oligarchic dominance in western Amazonian plant communities. Journal of Tropical Ecology, 21, 613 â 626. https://doi.org/10.1017/s0266467405002579
dc.identifier.citedreferenceMalhado, A. C. M., Oliveiraâ Neto, J. A., Stropp, J., Strona, G., Dias, L. C. P., Pinto, L. B., & Ladle, R. J. ( 2015 ). Climatological correlates of seed size in Amazonian forest trees. Journal of Vegetation Science, 26, 956 â 963. https://doi.org/10.1111/jvs.12301
dc.identifier.citedreferenceMehlich, A. ( 1984 ). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409 â 1416. https://doi.org/10.1080/00103628409367568
dc.identifier.citedreferenceMyers, J. A., Chase, J. M., Jiménez, I., Jørgensen, P. M., Araujoâ Murakami, A., Paniaguaâ Zambrana, N., & Seidel, R. ( 2013 ). Betaâ diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151 â 157. https://doi.org/10.1111/ele.12021
dc.identifier.citedreferenceNormand, S., Vormisto, J., Svenning, J.â C., Grández, C., & Balslev, H. ( 2006 ). Geographical and environmental controls of palm beta diversity in paleoâ riverine terrace forests in Amazonian Peru. Plant Ecology, 186, 161 â 176. https://doi.org/10.1007/s11258-006-9120-9
dc.identifier.citedreferencePansonato, M. P., Costa, F. R. C., de Castilho, C. V., Carvalho, F. A., & Zuquim, G. ( 2013 ). Spatial scale or amplitude of predictors as determinants of the relative importance of environmental factors to plant community structure. Biotropica, 45, 299 â 307. https://doi.org/10.1111/btp.12008
dc.identifier.citedreferencePhillips, O. L., Vargas, P. N., Monteagudo, A. L., Cruz, A. P., Zans, M.â E. C., Sanchez, W. G., â ¦ Rose, S. ( 2003 ). Habitat association among Amazonian tree species: a landscapeâ scale approach. Journal of Ecology, 91, 757 â 775. https://doi.org/10.1046/j.1365-2745.2003.00815.x
dc.identifier.citedreferencePitman, N. C. A., Silman, M. R., & Terborgh, J. W. ( 2013 ). Oligarchies in Amazonian tree communities: a tenâ year review. Ecography, 36, 114 â 123. https://doi.org/10.1111/j.1600-0587.2012.00083.x
dc.identifier.citedreferencePitman, N. C. A., Terborgh, J., Silman, M. R., & Núñez, V. P. ( 1999 ). Tree species distributions in an upper Amazonian forest. Ecology, 80, 2651 â 2661. https://doi.org/10.1890/0012-9658(1999)080[2651:tsdiau]2.0.co;2
dc.identifier.citedreferencePitman, N. C. A., Terborgh, J. W., Silman, M. R., Núñez, V. P., Neill, D. A., Cerón, C. E., â ¦ Aulestia, M. ( 2001 ). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 82, 2101 â 2117. https://doi.org/10.1111/j.1600-0587.2012.00083.x
dc.identifier.citedreferencePyke, C. R., Condit, R., Aguilar, S., & Lao, S. ( 2001 ). Floristic composition across a climatic gradient in a neotropical lowland forest. Journal of Vegetation Science, 12, 553 â 566. https://doi.org/10.2307/3237007
dc.identifier.citedreferenceQian, H., & Ricklefs, R. E. ( 2012 ). Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography, 21, 341 â 351. https://doi.org/10.1111/j.1466-8238.2011.00672.x
dc.identifier.citedreferenceR Core Team ( 2015 ). R: A language and environment for statistical computing (version 3.2.2). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
dc.identifier.citedreferenceSesnie, S. E., Finegan, B., Gessler, P. E., & Ramos, Z. ( 2009 ). Landscapeâ scale environmental and floristic variation in Costa Rican oldâ growth rain forest remnants. Biotropica, 41, 16 â 26. https://doi.org/10.1111/j.1744-7429.2008.00451.x
dc.identifier.citedreferenceStevens, G. C. ( 1992 ). The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. American Naturalist, 140, 893 â 911. https://doi.org/10.1086/285447
dc.identifier.citedreferenceTerborgh, J., Foster, R. B., & Percy, N. V. ( 1995 ). Tropical tree communities: A test of the nonequilibrium hypothesis. Ecology, 77, 561 â 567. https://doi.org/10.2307/2265630
dc.identifier.citedreferenceToledo, M., Peñaâ Claros, M., Bongers, F., Alarcón, A., Balcázar, J., Chuviña, J., â ¦ Poorter, L. ( 2012 ). Distribution patterns of tropical woody species in response to climatic and edaphic gradients. Journal of Ecology, 100, 253 â 263. https://doi.org/10.1111/j.1365-2745.2011.01890.x
dc.identifier.citedreferenceTuomisto, H. ( 2010 ). A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2 â 22. https://doi.org/10.1111/j.1600-0587.2009.05880.x
dc.identifier.citedreferenceTuomisto, H., & Ruokolainen, K. ( 1994 ). Distribution of Pteridophyta and Melastomataceae along an edaphic gradient in an Amazonian rain forest. Journal of Vegetation Science, 5, 25 â 34. https://doi.org/10.2307/3235634
dc.identifier.citedreferenceWiens, J. J. ( 2004 ). Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution, 58, 193â 197. https://doi.org/10.1554/03-447
dc.identifier.citedreferenceAdler, P. B., HilleRisLambers, J., & Levine, J. M. ( 2007 ). A niche for neutrality. Ecology Letters, 10, 95 â 104. https://doi.org/10.1111/j.1461-0248.2006.00996.x
dc.identifier.citedreferenceAndersen, K. M., Turner, B. L., & Dalling, J. W. ( 2010 ). Soilâ based habitat partitioning in understorey palms in lower montane tropical forests. Journal of Biogeography, 37, 278 â 292. https://doi.org/10.1111/j.1365-2699.2009.02192.x
dc.identifier.citedreferenceAnderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., â ¦ Swenson, N. G. ( 2011 ). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19 â 28. https://doi.org/10.1111/j.1461-0248.2010.01552.x
dc.identifier.citedreferenceArellano, G., Jørgensen, P. M., Fuentes, A. F., Loza, M. I., Torrez, V., & Macía, M. J. ( 2015 ). Oligarchic patterns in tropical forests: role of the spatial extent, environmental heterogeneity and diversity. Journal of Biogeography, 43, 616 â 626. https://doi.org/10.1111/jbi.12653
dc.identifier.citedreferenceArellano, G., & Macía, M. J. ( 2014 ). Local and regional dominance of woody plants along an elevational gradient in a tropical montane forest of northwestern Bolivia. Plant Ecology, 215, 39 â 54. https://doi.org/10.1007/s11258-013-0277-8
dc.identifier.citedreferenceArellano, G., Tello, J. S., Jørgensen, P. M., Fuentes, A. F., Loza, M. I., Torrez, V., & Macía, M. J. ( 2016 ). Disentangling environmental and spatial processes of community assembly in tropical forests from local to regional scales. Oikos, 125, 326 â 335. https://doi.org/10.1111/oik.02426
dc.identifier.citedreferenceArellano, G., Umaña, M. N., Macía, M. J., Loza, M. I., Fuentes, A., Cala, V., & Jørgensen, P. M. ( 2016 ). The role of niche overlap, environmental heterogeneity, landscape roughness and productivity in shaping species abundance distributions along the Amazonâ Andes gradient. Global Ecology and Biogeography, 26, 191 â 202. https://doi.org/10.1111/geb.12531
dc.identifier.citedreferenceBjorholm, S., Svenning, J.â C., Skov, F., & Balslev, H. ( 2008 ). To what extent does Tobler’s 1st law of geography apply to macroecology? A case study using American palms (Arecaceae). BMC Ecology, 8, 11. https://doi.org/10.1186/1472-6785-8-11
dc.identifier.citedreferenceBlachâ Overgaard, A., Svenning, J.â C., Dransfield, J., Greve, M., & Balslev, H. ( 2010 ). Determinants of palm species distributions across Africa: The relative roles of climate, nonâ climatic environmental factors, and spatial constraints. Ecography, 33, 380 â 391. https://doi.org/10.1111/j.1600-0587.2010.06273.x
dc.identifier.citedreferenceBrehm, G., Colwell, R. K., & Kluge, J. ( 2007 ). The role of environment and midâ domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography, 16, 205 â 219. https://doi.org/10.1111/j.1466-8238.2006.00281.x
dc.identifier.citedreferenceCampos, D. G. ( 2011 ). On the distinction between Peirce’s abduction and Lipton’s Inference to the best explanation. Synthese, 180, 419 â 442. https://doi.org/10.1007/s11229-009-9709-3
dc.identifier.citedreferenceChang, L.â W., Zelený, D., Li, C.â F., Chiu, S.â T., & Hsieh, C.â F. ( 2013 ). Better environmental data may reverse conclusions about nicheâ and dispersalâ based processes in community assembly. Ecology, 94, 2145 â 2151. https://doi.org/10.1890/12-2053.1
dc.identifier.citedreferenceChave, J., & Leigh Jr., E. G. ( 2002 ). A spatially explicit neutral model of βâ diversity in tropical forests. Theoretical Population Biology, 62, 153 â 168. https://doi.org/10.1006/tpbi.2002.1597
dc.identifier.citedreferenceCondit, R., Pitman, N., Leigh Jr., E. G., Chave, J., Terborgh, J., Foster, R. B., â ¦ Hubbell, S. P. ( 2002 ). Betaâ diversity in tropical forest trees. Science, 295 ( 5555 ), 666 â 669. https://doi.org/10.1126/science.1066854
dc.identifier.citedreferenceCutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. ( 2007 ). Random forests for classification in ecology. Ecology, 88, 2783 â 2792. https://doi.org/10.1890/07-0539.1
dc.identifier.citedreferenceDuque, A., Sánchez, M., Cavelier, J., & Duivenvoorden, J. F. ( 2002 ). Different floristic patterns of woody understorey and canopy plants in Colombian Amazonia. Journal of Tropical Ecology, 18 ( 04 ), 499 â 525. https://doi.org/10.1017/s0266467402002341
dc.identifier.citedreferenceGhalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. ( 2006 ). Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integrative and Comparative Biology, 46, 5 â 17. https://doi.org/10.1093/icb/icj003
dc.identifier.citedreferenceGilbert, B., & Lechowicz, M. J. ( 2004 ). Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences, 101, 7651 â 7656. https://doi.org/10.1073/pnas.0400814101
dc.identifier.citedreferenceGravel, D., Canham, C. D., Beaudet, M., & Messier, C. ( 2006 ). Reconciling niche and neutrality: The continuum hypothesis. Ecology Letters, 9, 399 â 409. https://doi.org/10.1111/j.1461-0248.2006.00884.x
dc.identifier.citedreferenceHijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. ( 2005 ). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 â 1978. https://doi.org/10.1002/joc.1276
dc.identifier.citedreferenceHillyer, R., & Silman, M. R. ( 2010 ). Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Global Change Biology, 16, 3205 â 3214. https://doi.org/10.1111/j.1365-2486.2010.02268.x
dc.identifier.citedreferenceHomeier, J., Hertel, D., Camenzind, T., Cumbicus, N. L., Maraun, M., Martinson, G. O., â ¦ Leuschner, C. ( 2012 ). Tropical Andean forests are highly susceptible to nutrient inputs â rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS ONE, 7, e47128. https://doi.org/10.1371/journal.pone.0047128
dc.identifier.citedreferenceHubbell, S. P. ( 1979 ). Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203(4387), 1299 â 1309. https://doi.org/10.1126/science.203.4387.1299
dc.identifier.citedreferenceHubbell, S. P. ( 1997 ). A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs, 16, S9 â S21. https://doi.org/10.1007/s003380050237
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.