Show simple item record

A microfluidic model of human brain (μHuB) for assessment of blood brain barrier

dc.contributor.authorBrown, Tyler D.
dc.contributor.authorNowak, Maksymilian
dc.contributor.authorBayles, Alexandra V.
dc.contributor.authorPrabhakarpandian, Balabhaskar
dc.contributor.authorKarande, Pankaj
dc.contributor.authorLahann, Joerg
dc.contributor.authorHelgeson, Matthew E.
dc.contributor.authorMitragotri, Samir
dc.date.accessioned2019-07-03T19:57:36Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationBrown, Tyler D.; Nowak, Maksymilian; Bayles, Alexandra V.; Prabhakarpandian, Balabhaskar; Karande, Pankaj; Lahann, Joerg; Helgeson, Matthew E.; Mitragotri, Samir (2019). "A microfluidic model of human brain (μHuB) for assessment of blood brain barrier." Bioengineering & Translational Medicine 4(2): n/a-n/a.
dc.identifier.issn2380-6761
dc.identifier.issn2380-6761
dc.identifier.urihttps://hdl.handle.net/2027.42/149762
dc.description.abstractMicrofluidic cellular models, commonly referred to as “organs‐on‐chips,” continue to advance the field of bioengineering via the development of accurate and higher throughput models, captivating the essence of living human organs. This class of models can mimic key in vivo features, including shear stresses and cellular architectures, in ways that cannot be realized by traditional two‐dimensional in vitro models. Despite such progress, current organ‐on‐a‐chip models are often overly complex, require highly specialized setups and equipment, and lack the ability to easily ascertain temporal and spatial differences in the transport kinetics of compounds translocating across cellular barriers. To address this challenge, we report the development of a three‐dimensional human blood brain barrier (BBB) microfluidic model (μHuB) using human cerebral microvascular endothelial cells (hCMEC/D3) and primary human astrocytes within a commercially available microfluidic platform. Within μHuB, hCMEC/D3 monolayers withstood physiologically relevant shear stresses (2.73 dyn/cm2) over a period of 24 hr and formed a complete inner lumen, resembling in vivo blood capillaries. Monolayers within μHuB expressed phenotypical tight junction markers (Claudin‐5 and ZO‐1), which increased expression after the presence of hemodynamic‐like shear stress. Negligible cell injury was observed when the monolayers were cultured statically, conditioned to shear stress, and subjected to nonfluorescent dextran (70 kDa) transport studies. μHuB experienced size‐selective permeability of 10 and 70 kDa dextrans similar to other BBB models. However, with the ability to probe temporal and spatial evolution of solute distribution, μHuBs possess the ability to capture the true variability in permeability across a cellular monolayer over time and allow for evaluation of the full breadth of permeabilities that would otherwise be lost using traditional end‐point sampling techniques. Overall, the μHuB platform provides a simplified, easy‐to‐use model to further investigate the complexities of the human BBB in real‐time and can be readily adapted to incorporate additional cell types of the neurovascular unit and beyond.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherBBB
dc.subject.otherorgan on chips
dc.subject.othermicrofluidic
dc.subject.otherbrain on a chip
dc.titleA microfluidic model of human brain (μHuB) for assessment of blood brain barrier
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149762/1/btm210126_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149762/2/btm210126.pdf
dc.identifier.doi10.1002/btm2.10126
dc.identifier.sourceBioengineering & Translational Medicine
dc.identifier.citedreferenceFulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int J Cell Biol. 2010; 2010: 1 ‐ 23. https://doi.org/10.1155/2010/214074.
dc.identifier.citedreferenceWeksler B, Romero IA, Couraud P‐O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013; 10 ( 1 ): 16. https://doi.org/10.1186/2045-8118-10-16.
dc.identifier.citedreferencePoller B, Gutmann H, Krähenbühl S, et al. The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008; 107 ( 5 ): 1358 ‐ 1368. https://doi.org/10.1111/j.1471-4159.2008.05730.x.
dc.identifier.citedreferenceRahman NA, Rasil ANHM, Meyding‐Lamade U, et al. Immortalized endothelial cell lines for in vitro blood–brain barrier models: a systematic review. Brain Res. 2016; 1642: 532 ‐ 545. https://doi.org/10.1016/j.brainres.2016.04.024.
dc.identifier.citedreferenceTanzeglock T, Soos M, Stephanopoulos G, Morbidelli M. Induction of mammalian cell death by simple shear and extensional flows. Biotechnol Bioeng. 2009; 104 ( 2 ): 360 ‐ 370. https://doi.org/10.1002/bit.22405.
dc.identifier.citedreferenceKadohama T, Nishimura K, Hoshino Y, Sasajima T, Sumpio BE. Effects of different types of fluid shear stress on endothelial cell proliferation and survival. J Cell Physiol. 2007; 212 ( 1 ): 244 ‐ 251. https://doi.org/10.1002/jcp.21024.
dc.identifier.citedreferenceEigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013; 10 ( 1 ): 33. https://doi.org/10.1186/2045-8118-10-33.
dc.identifier.citedreferenceWeksler B, Romero IA, Couraud P‐O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013; 10 ( 1 ): 16. https://doi.org/10.1186/2045-8118-10-16.
dc.identifier.citedreferenceLi G, Yuan W, Fu BM. A model for the blood–brain barrier permeability to water and small solutes. J Biomech. 2010; 43 ( 11 ): 2133 ‐ 2140. https://doi.org/10.1016/j.jbiomech.2010.03.047.
dc.identifier.citedreferenceCucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 2011; 12: 40. https://doi.org/10.1186/1471-2202-12-40.
dc.identifier.citedreferenceThomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 2017; 37 ( 10 ): 3300 ‐ 3317. https://doi.org/10.1177/0271678X17722436.
dc.identifier.citedreferenceHallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of Laminins in the embryonic and mature vasculature. Physiol Rev. 2005; 85 ( 3 ): 979 ‐ 1000. https://doi.org/10.1152/physrev.00014.2004.
dc.identifier.citedreferencePrabhakarpandian B, Shen M‐C, Nichols JB, et al. SyM‐BBB: a microfluidic blood brain barrier model. Lab Chip. 2013; 13 ( 6 ): 1093 ‐ 1101. https://doi.org/10.1039/c2lc41208j.
dc.identifier.citedreferenceMadara JL. Regulation of the movement of solutes across tight junctions. Annu Rev Physiol. 1998; 60 ( 1 ): 143 ‐ 159. https://doi.org/10.1146/annurev.physiol.60.1.143.
dc.identifier.citedreferenceAbbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010; 37 ( 1 ): 13 ‐ 25. https://doi.org/10.1016/j.nbd.2009.07.030.
dc.identifier.citedreferenceKawedia JD, Nieman ML, Boivin GP, et al. Interaction between transcellular and paracellular water transport pathways through aquaporin 5 and the tight junction complex. Proc Natl Acad Sci USA. 2007; 104 ( 9 ): 3621 ‐ 3626. https://doi.org/10.1073/pnas.0608384104.
dc.identifier.citedreferenceKaya M, Ahishali B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. In: Turksen K, ed. Permeability Barrier: Methods and Protocols. Totowa, NJ: Humana Press; 2011: 369 ‐ 382. https://doi.org/10.1007/978-1-61779-191-8_25.
dc.identifier.citedreferenceJuliano RL. In: Juliano RL, ed. Targeted Drug Delivery. Vol 100. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. https://doi.org/10.1007/978-3-642-75862-1.
dc.identifier.citedreferenceBouldin TW, Krigman MR. Differential permeability of cerebral capillary and choroid plexus to lanthanum ion. Brain Res. 1975; 99 ( 2 ): 444 ‐ 448. https://doi.org/10.1016/0006-8993(75)90053-0.
dc.identifier.citedreferenceCserr HF, Bundgaard M. Blood–brain interfaces in vertebrates: a comparative approach. Am J Physiol. 1984; 246 ( 3 Pt 2 ): R277 ‐ R288. https://doi.org/10.1152/ajpregu.1984.246.3.R277.
dc.identifier.citedreferenceYuan W, Lv Y, Zeng M, Fu BM. Non‐invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc Res. 2009; 77 ( 2 ): 166 ‐ 173. https://doi.org/10.1016/j.mvr.2008.08.004.
dc.identifier.citedreferenceSajja RK, Prasad S, Cucullo L. Impact of altered glycaemia on blood–brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS. 2014; 11 ( 1 ): 8 ‐ 237. https://doi.org/10.1007/s10836-006-7823-4.
dc.identifier.citedreferenceRubin LL. A cell culture model of the blood–brain barrier. J Cell Biol. 1991; 115 ( 6 ): 1725 ‐ 1735. https://doi.org/10.1083/jcb.115.6.1725.
dc.identifier.citedreferencevon Bartheld CS, Bahney J, Herculano‐Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016; 524 ( 18 ): 3865 ‐ 3895. https://doi.org/10.1002/cne.24040.
dc.identifier.citedreferenceYuan H, Gaber MW, McColgan T, Naimark MD, Kiani MF, Merchant TE. Radiation‐induced permeability and leukocyte adhesion in the rat blood–brain barrier: modulation with anti‐ICAM‐1 antibodies. Brain Res. 2003; 969: 59 ‐ 69. https://doi.org/10.1016/S0006-8993(03)02278-9.
dc.identifier.citedreferenceDehouck M‐P, Jolliet‐Riant P, Brée F, Fruchart J‐C, Cecchelli R, Tillement J‐P. Drug transfer across the blood–brain barrier: correlation between in vitro and in vivo models. J Neurochem. 1992; 58 ( 5 ): 1790 ‐ 1797. https://doi.org/10.1111/j.1471-4159.1992.tb10055.x.
dc.identifier.citedreferenceAbbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013; 36 ( 3 ): 437 ‐ 449. https://doi.org/10.1007/s10545-013-9608-0.
dc.identifier.citedreferenceReese TS, Karnovsky MJ. Fine structural localizatin of blood–brain barrier to exogenous peroxidase. J Cell Biol. 1967; 34 ( 1 ): 207 ‐ 217. https://doi.org/10.1083/jcb.34.1.207.
dc.identifier.citedreferenceBrightman MW, Reese TS. Junctions between intimately opposed cell membranes in the vertebrate brain. J Cell Biol. 1969; 40: 648 ‐ 677. https://doi.org/10.1083/JCB.40.3.648.
dc.identifier.citedreferencePardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012; 32 ( 11 ): 1959 ‐ 1972. https://doi.org/10.1038/jcbfm.2012.126.
dc.identifier.citedreferenceCecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007; 6 ( 8 ): 650 ‐ 661. https://doi.org/10.1038/nrd2368.
dc.identifier.citedreferenceUlapane KR, On N, Kiptoo P, Williams TD, Miller DW, Siahaan TJ. Improving brain delivery of biomolecules via BBB modulation in mouse and rat: detection using MRI, NIRF, and mass spectrometry. Nanotheranostics. 2017; 1 ( 2 ): 217 ‐ 231. https://doi.org/10.7150/ntno.19158.
dc.identifier.citedreferenceBanks WA. Mouse models of neurological disorders: a view from the blood–brain barrier. Biochim Biophys Acta Mol Basis Dis. 2010; 1802 ( 10 ): 881 ‐ 888. https://doi.org/10.1016/j.bbadis.2009.10.011.
dc.identifier.citedreferenceWohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012; 161 ( 2 ): 264 ‐ 273. https://doi.org/10.1016/j.jconrel.2011.08.017.
dc.identifier.citedreferenceMcgonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation (McGonigle and Ruggeri). Biochem Pharmacol. 2014; 87 ( 1 ): 162 ‐ 171. https://doi.org/10.1016/j.bcp.2013.08.006.
dc.identifier.citedreferenceKafkafi N, Agassi J, Chesler EJ, et al. Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci Biobehav Rev. 2018; 87 ( October 2016 ): 218 ‐ 232. https://doi.org/10.1016/j.neubiorev.2018.01.003.
dc.identifier.citedreferenceDash AK, Elmquist WF. Separation methods that are capable of revealing blood–brain barrier permeability. J Chromatogr B Anal Technol Biomed Life Sci. 2003; 797 ( 1–2 ): 241 ‐ 254. https://doi.org/10.1016/S1570-0232(03)00605-6.
dc.identifier.citedreferencePasseleu‐Le Bourdonnec C, Carrupt PA, Scherrmann JM, Martel S. Methodologies to assess drug permeation through the blood–brain barrier for pharmaceutical research. Pharm Res. 2013; 30 ( 11 ): 2729 ‐ 2756. https://doi.org/10.1007/s11095-013-1119-z.
dc.identifier.citedreferencePardridge WM. Transport of small molecules through the blood–brain barrier: biology and methodology. Adv Drug Deliv Rev. 1995; 15 ( 1–3 ): 5 ‐ 36. https://doi.org/10.1016/0169-409X(95)00003-P.
dc.identifier.citedreferencePatabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. 2013; 1521: 1 ‐ 15. https://doi.org/10.1016/j.brainres.2012.06.057.
dc.identifier.citedreferenceNakagawa S, Deli MA, Nakao S, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007; 27 ( 6 ): 687 ‐ 694. https://doi.org/10.1007/s10571-007-9195-4.
dc.identifier.citedreferenceNakagawa S, Deli M a, Kawaguchi H, et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009; 54: 253 ‐ 263. https://doi.org/10.1016/j.neuint.2008.12.002.
dc.identifier.citedreferenceHatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three‐dimensional, all‐human in vitro model of the blood–brain barrier using mono‐, co‐, and tri‐cultivation Transwell models. J Neurosci Methods. 2011; 199 ( 2 ): 223 ‐ 229. https://doi.org/10.1016/j.jneumeth.2011.05.012.
dc.identifier.citedreferenceFreese C, Reinhardt S, Hefner G, Unger RE, Kirkpatrick CJ, Endres K. A novel blood–brain barrier co‐culture system for drug targeting of Alzheimer’s disease: establishment by using acitretin as a model drug. PLoS One. 2014; 9 ( 3 ): 1 ‐ 11. https://doi.org/10.1371/journal.pone.0091003.
dc.identifier.citedreferenceBanks WA, Gray AM, Erickson MA, et al. Lipopolysaccharide‐induced blood–brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation. 2015; 12 ( 1 ): 1 ‐ 15. https://doi.org/10.1186/s12974-015-0434-1.
dc.identifier.citedreferenceHelms HC, Abbott NJ, Burek M, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016; 36 ( 5 ): 862 ‐ 890. https://doi.org/10.1177/0271678X16630991.
dc.identifier.citedreferenceMadara JL. Regulation of the movement of solutes across tight junctions. Annu Rev Physiol. 1998; 60: 143 ‐ 159. https://doi.org/10.1146/annurev.physiol.60.1.143.
dc.identifier.citedreferenceGomes MJ, Mendes B, Martins S, Sarmento B. Cell‐based in vitro models for studying blood–brain barrier (BBB) permeability. In: Sarmento B, ed, Concepts and Models for Drug Permeability Studies: Cell and Tissue Based In Vitro Culture Models. Cambridge, UK: Woodhead Publishing; 2016; 169 ‐ 188. https://doi.org/10.1016/B978-0-08-100094-6.00011-0.
dc.identifier.citedreferenceSrinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015; 20 ( 2 ): 107 ‐ 126. https://doi.org/10.1177/2211068214561025.
dc.identifier.citedreferenceDavies PF. How do vascular endothelial cells respond to flow? Phys Ther. 1989; 4 ( 1 ): 22 ‐ 25. http://physiologyonline.physiology.org/content/4/1/22.short.
dc.identifier.citedreferenceShemesh J, Jalilian I, Shi A, Heng Yeoh G, Knothe Tate ML, Ebrahimi Warkiani M. Flow‐induced stress on adherent cells in microfluidic devices. Lab Chip. 2015; 15 ( 21 ): 4114 ‐ 4127. https://doi.org/10.1039/c5lc00633c.
dc.identifier.citedreferenceDavies PF. Flow‐mediated Mechanotransduction. Physiol Rev 1995; 75 ( 3 ): 519 – 560. doi: https://doi.org/10.1152/physrev.1995.75.3.519, Flow‐mediated endothelial mechanotransduction
dc.identifier.citedreferenceNaik P, Cucullo L. In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci. 2012; 101 ( 4 ): 1337 ‐ 1354. https://doi.org/10.1002/jps.23022.
dc.identifier.citedreferenceBogorad MI, Destefano J, Karlsson J, Wong AD, Gerecht S, Searson PC. Review: in vitro microvessel models. Lab Chip. 2015; 15 ( 22 ): 4242 ‐ 4255. https://doi.org/10.1039/C5LC00832H.
dc.identifier.citedreferenceCucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 2011; 12: 40. https://doi.org/10.1186/1471-2202-12-40.
dc.identifier.citedreferenceChien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. AJP Hear Circ Physiol. 2006; 292 ( 3 ): H1209 ‐ H1224. https://doi.org/10.1152/ajpheart.01047.2006.
dc.identifier.citedreferenceReinitz A, Destefano J, Ye M, Wong AD, Searson PC. Human brain microvascular endothelial cells resist elongation due to shear stress. Microvasc Res. 2015; 99: 8 ‐ 18. https://doi.org/10.1016/j.mvr.2015.02.008.
dc.identifier.citedreferenceYe M, Sanchez HM, Hultz M, et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci Rep. 2015; 4 ( 1 ): 4681. https://doi.org/10.1038/srep04681.
dc.identifier.citedreferenceGarcia‐Polite F, Martorell J, Del Rey‐Puech P, et al. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab. 2017; 37 ( 7 ): 2614 ‐ 2625. https://doi.org/10.1177/0271678X16672482.
dc.identifier.citedreferenceGupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. Microfluidics‐based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med. 2016; 1 ( 1 ): 63 ‐ 81. https://doi.org/10.1002/btm2.10013.
dc.identifier.citedreferenceJarvis M, Arnold M, Ott J, Pant K, Prabhakarpandian B, Mitragotri S. Microfluidic co‐culture devices to assess penetration of nanoparticles into cancer cell mass. Bioeng Transl Med. 2017; 2 ( 3 ): 268 ‐ 277. https://doi.org/10.1002/btm2.10079.
dc.identifier.citedreferenceBooth R, Kim H. Characterization of a microfluidic in vitro model of the blood–brain barrier (μBBB). Lab Chip. 2012; 12 ( 10 ): 1784 ‐ 1792. https://doi.org/10.1039/c2lc40094d.
dc.identifier.citedreferenceCucullo L, Couraud P‐O, Weksler B, et al. Immortalized human brain endothelial cells and flow‐based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab. 2008; 28 ( 2 ): 312 ‐ 328. https://doi.org/10.1038/sj.jcbfm.9600525.
dc.identifier.citedreferenceBrown JA, Pensabene V, Markov DA, et al. Recreating blood–brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics. 2015; 9 ( 5 ): 054124. https://doi.org/10.1063/1.4934713.
dc.identifier.citedreferenceGriep LM, Wolbers F, De Wagenaar B, et al. BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed Microdevices. 2013; 15: 145 ‐ 150. https://doi.org/10.1007/s10544-012-9699-7.
dc.identifier.citedreferenceDeosarkar SP, Prabhakarpandian B, Wang B, Sheffield JB, Krynska B, Kiani MF. A novel dynamic neonatal blood–brain barrier on a chip. PLoS One. 2015; 10 ( 11 ): 1 ‐ 21. https://doi.org/10.1371/journal.pone.0142725.
dc.identifier.citedreferenceWalter FR, Valkai S, Kincses A, et al. A versatile lab‐on‐a‐chip tool for modeling biological barriers. Sens Actuators B. 2016; 222: 1209 ‐ 1219. https://doi.org/10.1016/j.snb.2015.07.110.
dc.identifier.citedreferenceDewey CFJ, Bussolari SR, Gimbrone MAJ, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981; 103 ( 3 ): 177 ‐ 185. https://doi.org/10.1115/1.3138276.
dc.identifier.citedreferenceKoutsiaris AG, Tachmitzi S V, Batis N, Kotoula MG, Karabatsas CH, Tsironi E, Chatzoulis DZ Volume flow and wall shear stress quantification in the human conjunctival capillaries and post‐capillary venules in vivo. Biorheology 2007; 44 ( 5–6 ): 375 – 386. doi:N/A
dc.identifier.citedreferenceModarres HP, Janmaleki M, Novin M, et al. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release. 2018; 273 ( February ): 108 ‐ 130. https://doi.org/10.1016/j.jconrel.2018.01.024.
dc.identifier.citedreferenceHalldorsson S, Lucumi E, Gómez‐Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015; 63: 218 ‐ 231. https://doi.org/10.1016/j.bios.2014.07.029.
dc.identifier.citedreferenceLin K, Hsu PP, Chen BP, et al. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci USA. 2000; 97 ( 17 ): 9385 ‐ 9389. https://doi.org/10.1073/pnas.170282597.
dc.identifier.citedreferenceZiegler T, Nerem RM. Effect of flow on the process of endothelial cell division. Arterioscler Thromb. 1994; 14 ( 4 ): 636 ‐ 643. http://www.ncbi.nlm.nih.gov/pubmed/8148361.
dc.identifier.citedreferenceHerculano‐Houzel S. The human brain in numbers: a linearly scaled‐up primate brain. Front Hum Neurosci. 2009; 3 ( November ): 1 ‐ 11. https://doi.org/10.3389/neuro.09.031.2009.
dc.identifier.citedreferenceBrown NMO, Pfau SJ, Gu C. Bridging barriers: a comparative look at the blood – brain barrier across organisms. 2018; 32: 466 ‐ 478. https://doi.org/10.1101/gad.309823.117.ripherally.
dc.identifier.citedreferenceHerland A, van der Meer AD, Fitzgerald EA, Park T‐E, Sleeboom JJF, Ingber DE. Distinct contributions of astrocytes and Pericytes to Neuroinflammation identified in a 3D human blood–brain barrier on a Chip. PLoS One. 2016; 11 ( 3 ): e0150360. https://doi.org/10.1371/journal.pone.0150360.
dc.identifier.citedreferenceYoung EWK, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev. 2010; 39 ( 3 ): 1036 ‐ 1048. https://doi.org/10.1039/b909900j.
dc.identifier.citedreferenceHelms HC. In vitro models of the blood–brain barrier; an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016; 36: 862 ‐ 890. https://doi.org/10.1177/0271678X16630991.
dc.identifier.citedreferenceYoung EWK, Wheeler AR, Simmons CA. Matrix‐dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab Chip. 2007; 7 ( 12 ): 1759 ‐ 1766. https://doi.org/10.1039/b712486d.
dc.identifier.citedreferenceWang X, Phan DTT, Sobrino A, George SC, Hughes CCW, Lee AP. Engineering anastomosis between living capillary networks and endothelial cell‐lined microfluidic channels. Lab Chip. 2016; 16 ( 2 ): 282 ‐ 290. https://doi.org/10.1039/C5LC01050K.
dc.identifier.citedreferenceWeksler BB, Subileau EA, Perrie N, et al. Blood–brain barrier‐specific properties of a human adult brain endothelial cell line. FASEB J. 2005; 19 ( 13 ): 1872 ‐ 1874. https://doi.org/10.1096/fj.04-3458fje.
dc.identifier.citedreferenceDauchy S, Miller F, Couraud PO, et al. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol. 2009; 77 ( 5 ): 897 ‐ 909. https://doi.org/10.1016/j.bcp.2008.11.001.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.