Show simple item record

A pathologic twoâ way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity

dc.contributor.authorWarheit‐niemi, Helen I
dc.contributor.authorHult, Elissa M
dc.contributor.authorMoore, Bethany B
dc.date.accessioned2019-07-03T19:57:39Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019
dc.identifier.citationWarheit‐niemi, Helen I ; Hult, Elissa M; Moore, Bethany B (2019). "A pathologic twoâ way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity." Clinical & Translational Immunology (6): n/a-n/a.
dc.identifier.issn2050-0068
dc.identifier.issn2050-0068
dc.identifier.urihttps://hdl.handle.net/2027.42/149765
dc.description.abstractLung fibrosis is characterised by the accumulation of extracellular matrix within the lung and is secondary to both known and unknown aetiologies. This accumulation of scar tissue limits gas exchange causing respiratory insufficiency. The pathogenesis of lung fibrosis is poorly understood, but immunologicâ based treatments have been largely ineffective. Despite this, accumulating evidence suggests that innate immune cells and receptors play important modulatory roles in the initiation and propagation of the disease. Paradoxically, while innate immune signalling may be important for the pathogenesis of fibrosis, there is also evidence to suggest that innate immune function against pathogens may be impaired, leading to dysregulated and/or impaired host defence. This review summarises the evidence for this pathologic twoâ way street, highlights new concepts of pathogenesis and recommends future directions for research emphasis.Innate immunity has been shown to promote the development of lung injury and fibrosis through a myriad of mechanisms. New information also suggests that the fibrotic milieu can impair the function of innate immune cells, leading to further infection, dysbiosis and fibrotic progression.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermacrophage
dc.subject.otherneutrophil
dc.subject.otherTollâ like receptors
dc.subject.otherhost defence
dc.subject.othercollagen
dc.subject.otherbacteria
dc.titleA pathologic twoâ way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149765/1/cti21065.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149765/2/cti21065_am.pdf
dc.identifier.doi10.1002/cti2.1065
dc.identifier.sourceClinical & Translational Immunology
dc.identifier.citedreferenceMolyneaux PL, Cox MJ, Willisâ Owen SA et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2014; 190: 906 â 913.
dc.identifier.citedreferenceShulgina L, Cahn AP, Chilvers ER et al. Treating idiopathic pulmonary fibrosis with the addition of coâ trimoxazole: a randomised controlled trial. Thorax 2013; 68: 155 â 162.
dc.identifier.citedreferenceO’Dwyer DN, Zhou X, Wilke CA et al. Lung dysbiosis, inflammation, and injury in hematopoietic cell transplantation. Am J Respir Crit Care Med 2018; 198: 1312 â 1321.
dc.identifier.citedreferenceKnippenberg S, Ueberberg B, Maus R et al. Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin. Am J Respir Crit Care Med 2015; 70: 636 â 646.
dc.identifier.citedreferenceAshley SL, Jegal Y, Moore TA et al. γâ herpes virusâ 68, but not pseudomonas aeruginosa or influenza a (h1n1), exacerbates established murine lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2014; 307: L219 â L230.
dc.identifier.citedreferenceFrankeâ Ullmann G, Pfortner C, Walter P et al. Characterization of murine lung interstitial macrophages in comparison with alveolar macrophages in vitro. J Immunol 1996; 157: 3097 â 3104.
dc.identifier.citedreferenceBrinkmann V, Reichard U, Goosmann C et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532 â 1535.
dc.identifier.citedreferenceBelaaouaj A, McCarthy R, Baumann M et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med 1998; 4: 615 â 618.
dc.identifier.citedreferenceJin J, Wang Y, Ma Q et al. Lairâ 1 activation inhibits inflammatory macrophage phenotype in vitro. Cell Immunol 2018; 331: 78 â 84.
dc.identifier.citedreferenceGeerdink RJ, Hennus MP, Westerlaken GHA et al. Lairâ 1 limits neutrophil extracellular trap formation in viral bronchiolitis. J Allergy Clin Immunol 2018; 141: 811 â 814.
dc.identifier.citedreferenceAviviâ Green C, Singal M, Vogel WF. Discoidin domain receptor 1â deficient mice are resistant to bleomycinâ induced lung fibrosis. Am J Respir Crit Care Med 2006; 174: 420 â 427.
dc.identifier.citedreferenceZhao H, Bian H, Bu X et al. Targeting of discoidin domain receptor 2 (ddr2) prevents myofibroblast activation and neovessel formation during pulmonary fibrosis. Mol Ther 2016; 24: 1734 â 1744.
dc.identifier.citedreferenceKim SH, Lee S, Suk K et al. Discoidin domain receptor 1 mediates collagenâ induced nitric oxide production in j774a.1 murine macrophages. Free Radic Biol Med 2007; 42: 343 â 352.
dc.identifier.citedreferenceFranco C, Britto K, Wong E et al. Discoidin domain receptor 1 on bone marrowâ derived cells promotes macrophage accumulation during atherogenesis. Circ Res 2009; 105: 1141 â 1148.
dc.identifier.citedreferenceAfonso PV, McCann CP, Kapnick SM et al. Discoidin domain receptor 2 regulates neutrophil chemotaxis in 3d collagen matrices. Blood 2013; 121: 1644 â 1650.
dc.identifier.citedreferenceScheraga RG, Abraham S, Niese KA et al. Trpv4 mechanosensitive ion channel regulates lipopolysaccharideâ stimulated macrophage phagocytosis. J Immunol 2016; 196: 428 â 436.
dc.identifier.citedreferenceZimmerman BT, Canono BP, Campbell PA. Silica decreases phagocytosis and bactericidal activity of both macrophages and neutrophils in vitro. Immunology 1986; 59: 521 â 525.
dc.identifier.citedreferencePark EJ, Lee GH, Kim JC et al. Pulmonary glass particles may persist in the lung suppressing function of immune cells. Environ Toxicol 2017; 32: 1688 â 1700.
dc.identifier.citedreferenceKusaka T, Nakayama M, Nakamura K et al. Effect of silica particle size on macrophage inflammatory responses. PLoS One 2014; 9: e92634.
dc.identifier.citedreferenceBallinger MN, Aronoff DM, McMillan TR et al. Critical role of prostaglandin e2 overproduction in impaired pulmonary host response following bone marrow transplantation. J Immunol 2006; 177: 5499 â 5508.
dc.identifier.citedreferenceGurczynski SJ, Zhou X, Flaherty M et al. Bone marrow transplantâ induced alterations in notch signaling promote pathologic th17 responses to γâ herpesvirus infection. Mucosal Immunol 2018; 11: 881 â 893.
dc.identifier.citedreferenceSong JW, Hong SB, Lim CM et al. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J 2011; 37: 356 â 363.
dc.identifier.citedreferenceHsia CC, Hyde DM, Weibel ER. Lung structure and the intrinsic challenges of gas exchange. Compr Physiol 2016; 6: 827 â 895.
dc.identifier.citedreferenceWhitsett JA, Kalin TV, Xu Y et al. Building and regenerating the lung cell by cell. Physiol Rev 2019; 99: 513 â 554.
dc.identifier.citedreferenceSannes PL, Wang J. Basement membranes and pulmonary development. Exp Lung Res 1997; 23: 101 â 108.
dc.identifier.citedreferenceGuillot L, Nathan N, Tabary O et al. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol 2013; 45: 2568 â 2573.
dc.identifier.citedreferenceGarbi N, Lambrecht BN. Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Arch 2017; 469: 561 â 572.
dc.identifier.citedreferenceBhattacharya J, Westphalen K. Macrophageâ epithelial interactions in pulmonary alveoli. Semin Immunopathol 2016; 38: 461 â 469.
dc.identifier.citedreferenceMoralesâ Nebreda L, Misharin AV, Perlman H et al. The heterogeneity of lung macrophages in the susceptibility to disease. Eur Respir Rev 2015; 24: 505 â 509.
dc.identifier.citedreferenceWilliamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycinâ induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res 2015; 41: 57 â 73.
dc.identifier.citedreferenceSgalla G, Biffi A, Richeldi L. Idiopathic pulmonary fibrosis: diagnosis, epidemiology and natural history. Respirology 2016; 21: 427 â 437.
dc.identifier.citedreferenceKing TE Jr, Albera C, Bradford WZ et al. Effect of interferon gammaâ 1b on survival in patients with idiopathic pulmonary fibrosis (inspire): a multicentre, randomised, placeboâ controlled trial. Lancet 2009; 374: 222 â 228.
dc.identifier.citedreferenceRaghu G, Brown KK, Costabel U et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placeboâ controlled trial. Am J Respir Crit Care Med 2008; 178: 948 â 955.
dc.identifier.citedreferenceRaghu G, Anstrom KJ, King TE Jr et al. Prednisone, azathioprine, and nâ acetylcysteine for pulmonary fibrosis. N Engl J Med 2012; 366: 1968 â 1977.
dc.identifier.citedreferenceChen W, Syldath U, Bellmann K et al. Human 60â kda heatâ shock protein: a danger signal to the innate immune system. J Immunol 1999; 162: 3212 â 3219.
dc.identifier.citedreferenceO’Dwyer DN, Gurczynski SJ, Moore BB. Pulmonary immunity and extracellular matrix interactions. Matrix Biol 2018; 73: 122 â 134.
dc.identifier.citedreferenceKelsh R, You R, Horzempa C et al. Regulation of the innate immune response by fibronectin: synergism between the iiiâ 1 and eda domains. PLoS One 2014; 9: e102974.
dc.identifier.citedreferenceScheibner KA, Lutz MA, Boodoo S et al. Hyaluronan fragments act as an endogenous danger signal by engaging tlr2. J Immunol 2006; 177: 1272 â 1281.
dc.identifier.citedreferenceCollins SL, Black KE, Chanâ Li Y et al. Hyaluronan fragments promote inflammation by downâ regulating the antiâ inflammatory a2a receptor. Am J Respir Cell Mol Biol 2011; 45: 675 â 683.
dc.identifier.citedreferenceLiang J, Zhang Y, Xie T et al. Hyaluronan and tlr4 promote surfactantâ proteinâ câ positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat Med 2016; 22: 1285 â 1293.
dc.identifier.citedreferenceBollyky PL, Lord JD, Masewicz SA et al. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of cd4+cd25+ regulatory t cells. J Immunol 2007; 179: 744 â 747.
dc.identifier.citedreferenceJoshi H, Morley SC. Cells under stress: the mechanical environment shapes inflammasome responses to danger signals. J Leukoc Biol 2019. eâ pub ahead of print Jan 15; https://doi.org/10.1002/jlb.3mir1118-417r
dc.identifier.citedreferencedos Santos G, Rogel MR, Baker MA et al. Vimentin regulates activation of the nlrp3 inflammasome. Nat Commun 2015; 6: 6574.
dc.identifier.citedreferenceKuang J, Xie M, Wei X. The nalp3 inflammasome is required for collagen synthesis via the nfkappab pathway. Int J Mol Med 2018; 41: 2279 â 2287.
dc.identifier.citedreferenceStoutâ Delgado HW, Cho SJ, Chu SG et al. Ageâ dependent susceptibility to pulmonary fibrosis is associated with nlrp3 inflammasome activation. Am J Respir Cell Mol Biol 2016; 55: 252 â 263.
dc.identifier.citedreferenceGomez DM, Urcuquiâ Inchima S, Hernandez JC. Silica nanoparticles induce nlrp3 inflammasome activation in human primary immune cells. Innate Immun 2017; 23: 697 â 708.
dc.identifier.citedreferenceHornung V, Bauernfeind F, Halle A et al. Silica crystals and aluminum salts activate the nalp3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9: 847 â 856.
dc.identifier.citedreferenceLunaâ Gomes T, Santana PT, Coutinhoâ Silva R. Silicaâ induced inflammasome activation in macrophages: role of atp and p2x7 receptor. Immunobiology 2015; 220: 1101 â 1106.
dc.identifier.citedreferenceDostert C, Petrilli V, Van Bruggen R et al. Innate immune activation through nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320: 674 â 677.
dc.identifier.citedreferenceDomingoâ Gonzalez R, Huang SK, Laouar Y et al. Coxâ 2 expression is upregulated by DNA hypomethylation after hematopoietic stem cell transplantation. J Immunol 2012; 189: 4528 â 4536.
dc.identifier.citedreferenceMartinezâ Colon GJ, Taylor QM, Wilke CA et al. Elevated prostaglandin e2 postâ bone marrow transplant mediates interleukinâ 1betaâ related lung injury. Mucosal Immunol 2018; 11: 319 â 332.
dc.identifier.citedreferenceNoth I, Zhang Y, Ma SF et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genomeâ wide association study. Lancet Respir Med 2013; 1: 309 â 317.
dc.identifier.citedreferenceSeibold MA, Wise AL, Speer MC et al. A common muc5b promoter polymorphism and pulmonary fibrosis. N Engl J Med 2011; 364: 1503 â 1512.
dc.identifier.citedreferenceHancock LA, Hennessy CE, Solomon GM et al. Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice. Nat Commun 2018; 9: 5363.
dc.identifier.citedreferenceKinder BW, Brown KK, Schwarz MI et al. Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest 2008; 133: 226 â 232.
dc.identifier.citedreferenceBlandinieres A, Gendron N, Bacha N et al. Interleukinâ 8 release by endothelial colonyâ forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis 2019; 22: 325 â 339.
dc.identifier.citedreferenceChua F, Dunsmore SE, Clingen PH et al. Mice lacking neutrophil elastase are resistant to bleomycinâ induced pulmonary fibrosis. Am J Pathol 2007; 170: 65 â 74.
dc.identifier.citedreferenceLu W, Yao X, Ouyang P et al. Drug repurposing of histone deacetylase inhibitors that alleviate neutrophilic inflammation in acute lung injury and idiopathic pulmonary fibrosis via inhibiting leukotriene a4 hydrolase and blocking ltb4 biosynthesis. J Med Chem 2017; 60: 1817 â 1828.
dc.identifier.citedreferenceTakemasa A, Ishii Y, Fukuda T. A neutrophil elastase inhibitor prevents bleomycinâ induced pulmonary fibrosis in mice. Eur Respir J 2012; 40: 1475 â 1482.
dc.identifier.citedreferenceGregory AD, Kliment CR, Metz HE et al. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J Leukoc Biol 2015; 98: 143 â 152.
dc.identifier.citedreferenceLin AM, Rubin CJ, Khandpur R et al. Mast cells and neutrophils release ilâ 17 through extracellular trap formation in psoriasis. J Immunol 2011; 187: 490 â 500.
dc.identifier.citedreferenceZhou X, Loomisâ King H, Gurczynski SJ et al. Bone marrow transplantation alters lung antigenâ presenting cells to promote th17 response and the development of pneumonitis and fibrosis following gammaherpesvirus infection. Mucosal Immunol 2016; 9: 610 â 620.
dc.identifier.citedreferenceWei YR, Qiu H, Wu Q et al. Establishment of the mouse model of acute exacerbation of idiopathic pulmonary fibrosis. Exp Lung Res 2016; 42: 75 â 86.
dc.identifier.citedreferenceMaher TM, Evans IC, Bottoms SE et al. Diminished prostaglandin e2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010; 182: 73 â 82.
dc.identifier.citedreferenceWilborn J, Crofford LJ, Burdick MD et al. Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin e2 and to express cyclooxygenaseâ 2. J Clin Invest 1995; 95: 1861 â 1868.
dc.identifier.citedreferenceDomingoâ Gonzalez R, Martinezâ Colon GJ, Smith AJ et al. Inhibition of neutrophil extracellular trap formation after stem cell transplant by prostaglandin e2. Am J Respir Crit Care Med 2016; 193: 186 â 197.
dc.identifier.citedreferenceDesai J, Forestoâ Neto O, Honarpisheh M et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trapâ like chromatin. Sci Rep 2017; 7: 15003.
dc.identifier.citedreferenceUmbright C, Sellamuthu R, Roberts JR et al. Pulmonary toxicity and global gene expression changes in response to subâ chronic inhalation exposure to crystalline silica in rats. J Toxicol Environ Health A 2017; 80: 1349 â 1368.
dc.identifier.citedreferenceCruz FF, Horta LF, Maia Lde A et al. Dasatinib reduces lung inflammation and fibrosis in acute experimental silicosis. PLoS One 2016; 11: e0147005.
dc.identifier.citedreferenceGurczynski SJ, Procario MC, O’Dwyer DN et al. Loss of ccr2 signaling alters leukocyte recruitment and exacerbates gammaâ herpesvirusâ induced pneumonitis and fibrosis following bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol 2016; 311: L611 â L627.
dc.identifier.citedreferenceDe Filippo K, Dudeck A, Hasenberg M et al. Mast cell and macrophage chemokines cxcl1/cxcl2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 2013; 121: 4930 â 4937.
dc.identifier.citedreferenceHesse M, Modolell M, La Flamme AC et al. Differential regulation of nitric oxide synthaseâ 2 and arginaseâ 1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of lâ arginine metabolism. J Immunol 2001; 167: 6533 â 6544.
dc.identifier.citedreferenceRoberts AB, Sporn MB, Assoian RK et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83: 4167 â 4171.
dc.identifier.citedreferenceSun L, Hult EM, Cornell TT et al. Loss of myeloidâ specific protein phosphatase 2a enhances lung injury and fibrosis and results in ilâ 10â dependent sensitization of epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 2019; 316: L1035 â L1048.
dc.identifier.citedreferenceMoore BB, Paine R 3rd, Christensen PJ et al. Protection from pulmonary fibrosis in the absence of ccr2 signaling. J Immunol 2001; 167: 4368 â 4377.
dc.identifier.citedreferenceGibbons MA, MacKinnon AC, Ramachandran P et al. Ly6chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med 2011; 184: 569 â 581.
dc.identifier.citedreferenceAran D, Looney AP, Liu L et al. Referenceâ based analysis of lung singleâ cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20: 163 â 172.
dc.identifier.citedreferenceMisharin AV, Moralesâ Nebreda L, Reyfman PA et al. Monocyteâ derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 2017; 214: 2387 â 2404.
dc.identifier.citedreferenceGuilliams M, De Kleer I, Henri S et al. Alveolar macrophages develop from fetal monocytes that differentiate into longâ lived cells in the first week of life via gmâ csf. J Exp Med 2013; 210: 1977 â 1992.
dc.identifier.citedreferenceMisharin AV, Moralesâ Nebreda L, Mutlu GM et al. Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 2013; 49: 503 â 510.
dc.identifier.citedreferenceReyfman PA, Walter JM, Joshi N et al. Singleâ cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med 2018. eâ pub ahead of print Dec 15; https://doi.org/10.1164/rccm.201712-2410OC
dc.identifier.citedreferenceLandsman L, Varol C, Jung S. Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol 2007; 178: 2000 â 2007.
dc.identifier.citedreferenceGibbings SL, Goyal R, Desch AN et al. Transcriptome analysis highlights the conserved difference between embryonic and postnatalâ derived alveolar macrophages. Blood 2015; 126: 1357 â 1366.
dc.identifier.citedreferenceJanssen WJ, Barthel L, Muldrow A et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 2011; 184: 547 â 560.
dc.identifier.citedreferenceLodyga M, Cambridge E, Karvonen HM et al. Cadherinâ 11â mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active tgfâ beta. Sci Signal 2019; 12.
dc.identifier.citedreferenceO’Dwyer DN, Ashley SL, Gurczynski SJ et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med 2019; 199: 1127 â 1138.
dc.identifier.citedreferenceHan M, Zhou Y, Murray S et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the comet study. Lancet Respir Med 2014; 2: 548 â 556.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.