Show simple item record

New strategies for treatment of infectious sepsis

dc.contributor.authorWard, Peter A.
dc.contributor.authorFattahi, Fatemeh
dc.date.accessioned2019-07-03T19:57:42Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-07-03T19:57:42Z
dc.date.issued2019-07
dc.identifier.citationWard, Peter A.; Fattahi, Fatemeh (2019). "New strategies for treatment of infectious sepsis." Journal of Leukocyte Biology 106(1): 187-192.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/149767
dc.description.abstractIn this mini review, we describe the molecular mechanisms in polymicrobial sepsis that lead to a series of adverse events including activation of inflammatory and prothrombotic pathways, a faulty innate immune system, and multiorgan dysfunction. Complement activation is a well‐established feature of sepsis, especially involving generation of C5a and C5b‐9, along with engagement of relevant receptors for C5a. Activation of neutrophils by C5a leads to extrusion of DNA, forming neutrophil extracellular traps that contain myeloperoxidase and oxidases, along with extracellular histones. Generation of the distal complement activation product, C5b‐9 (known as the membrane attack complex, MAC), also occurs in sepsis. C5b‐9 activates the NLRP3 inflammasome, which damages mitochondria, together with appearance in plasma of IL‐1β and IL‐18. Histones are strongly proinflammatory as well as being prothrombotic, leading to activation of platelets and development of venous thrombosis. Multiorgan dysfunction is also a feature of sepsis. It is well known that septic cardiomyopathy, which if severe, can lead to death. This complication in sepsis is linked to reduced levels in cardiomyocytes of three critical proteins (SERCA2, NCX, Na+/K+‐ATPase). The reductions in these three key proteins are complement‐ and histone‐dependent. Dysfunction of these ATPases is linked to the cardiomyopathy of sepsis. These data suggest novel targets in the setting of sepsis in humans.Review on infectious sepsis and new therapeutic targets that include complement activation products and receptors and histones.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhistones
dc.subject.otherNLRP3 inflammasome
dc.subject.othercomplement
dc.subject.othercomplement receptors
dc.titleNew strategies for treatment of infectious sepsis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149767/1/jlb10342_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149767/2/jlb10342.pdf
dc.identifier.doi10.1002/JLB.4MIR1118-425R
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceDarwiche SS, Ruan X, Hoffman MK, et al. Selective roles for toll‐like receptors 2, 4, and 9 in systemic inflammation and immune dysfunction following peripheral tissue injury. J Trauma Acute Care Surg. 2013; 74: 1454 – 1461.
dc.identifier.citedreferenceHeesterbeek DAC, Angelier ML, Harrison RA, Rooijakkers SHM. Complement and bacterial infections: from molecular mechanisms to therapeutic applications. J Innate Immun. 2018; 10: 455 – 464.
dc.identifier.citedreferenceNguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol. 2017; 7: 373.
dc.identifier.citedreferenceKobayashi SD, Malachowa N, DeLeo FR. Neutrophils and bacterial immune evasion. J Innate Immun. 2018; 10: 432 – 441.
dc.identifier.citedreferenceFlannagan RS, Heit B, Heinrichs DE. Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens. 2015; 4: 826 – 868.
dc.identifier.citedreferenceTriantafilou K, Hughes TR, Triantafilou M, Morgan BP. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci. 2013; 126: 2903 – 2913.
dc.identifier.citedreferenceXu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011; 187: 2626 – 2631.
dc.identifier.citedreferenceSemeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet‐dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011; 118: 1952 – 1961.
dc.identifier.citedreferenceAllam R, Scherbaum CR, Darisipudi MN, et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol. 2012; 23: 1375 – 1388.
dc.identifier.citedreferenceKalbitz M, Grailer JJ, Fattahi F, et al. Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J. 2015; 29: 2185 – 2193.
dc.identifier.citedreferenceKalbitz M, Fattahi F, Grailer JJ, et al. Complement‐induced activation of the cardiac NLRP3 inflammasome in sepsis. FASEB J. 2016; 30: 3997 – 4006.
dc.identifier.citedreferenceFuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010; 107: 15880 – 15885.
dc.identifier.citedreferenceFattahi F, Russell MW, Malan EA, et al. Harmful roles of TLR3 and TLR9 in cardiac dysfunction developing during polymicrobial sepsis. Biomed Res Int. 2018; 2018: 4302726.
dc.identifier.citedreferenceEkaney ML, Otto GP, Sossdorf M, et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care. 2014; 18: 543.
dc.identifier.citedreferenceMena HA, Carestia A, Scotti L, Parborell F, Schattner M, Negrotto S. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells. J Thromb Haemost. 2016; 14: 397 – 410.
dc.identifier.citedreferenceFattahi F, Kalbitz M, Malan EA, et al. Complement‐induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. FASEB J. 2017; 31: 4129 – 4139.
dc.identifier.citedreferenceWong EK, Kavanagh D. Anticomplement C5 therapy with eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Transl Res. 2015; 165: 306 – 320.
dc.identifier.citedreferenceFisher CJ, Jr, Slotman GJ, Opal SM, et al. Initial evaluation of human recombinant interleukin‐1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open‐label, placebo‐controlled multicenter trial. Crit Care Med. 1994; 22: 12 – 21.
dc.identifier.citedreferenceFisher CJ, Jr, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double‐blind, placebo‐controlled trial. Phase III rhIL‐1ra Sepsis Syndrome Study Group. JAMA. 1994; 271: 1836 – 1843.
dc.identifier.citedreferenceVanden Berghe T, Demon D, Bogaert P, et al. Simultaneous targeting of IL‐1 and IL‐18 is required for protection against inflammatory and septic shock. Am J Respir Crit Care Med. 2014; 189: 282 – 291.
dc.identifier.citedreferenceWang HE, Shapiro NI, Angus DC, Yealy DM. National estimates of severe sepsis in United States emergency departments. Crit Care Med. 2007; 35: 1928 – 1936.
dc.identifier.citedreferenceRivers E, Nguyen B, Havstad S, et al. Early goal‐directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001; 345: 1368 – 1377.
dc.identifier.citedreferenceChun K, Syndergaard C, Damas C, et al. Sepsis pathogen identification. J Lab Autom. 2015; 20: 539 – 561.
dc.identifier.citedreferenceIskander KN, Osuchowski MF, Stearns‐Kurosawa DJ, et al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev. 2013; 93: 1247 – 1288.
dc.identifier.citedreferenceDellinger RP, Levy MM, Carlet JM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008; 34: 17 – 60.
dc.identifier.citedreferenceSeok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013; 110: 3507 – 3512.
dc.identifier.citedreferenceTakao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2015; 112: 1167 – 1172.
dc.identifier.citedreferenceFattahi F, Frydrych LM, Bian G, et al. Role of complement C5a and histones in septic cardiomyopathy. Mol Immunol. 2018; 102: 32 – 41.
dc.identifier.citedreferenceKalbitz M, Fattahi F, Herron TJ, et al. Complement destabilizes cardiomyocyte function in vivo after polymicrobial sepsis and in vitro. J Immunol. 2016; 197: 2353 – 2361.
dc.identifier.citedreferenceRittirsch D, Hoesel LM, Ward PA. The disconnect between animal models of sepsis and human sepsis. J Leukoc Biol. 2007; 81: 137 – 143.
dc.identifier.citedreferenceDeitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock. 1998; 9: 1 – 11.
dc.identifier.citedreferenceBuras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005; 4: 854 – 865.
dc.identifier.citedreferenceRemick DG, Newcomb DE, Bolgos GL, Call DR. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock. 2000; 13: 110 – 116.
dc.identifier.citedreferenceWichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock—a review of laboratory models and a proposal. J Surg Res. 1980; 29: 189 – 201.
dc.identifier.citedreferenceRittirsch D, Huber‐Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009; 4: 31 – 36.
dc.identifier.citedreferenceCuenca AG, Delano MJ, Kelly‐Scumpia KM, Moldawer LL, Efron PA. Cecal ligation and puncture. Curr Protoc Immunol. 2010: 13. Chapter 19, Unit 19.
dc.identifier.citedreferenceRittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008; 8: 776 – 787.
dc.identifier.citedreferenceWard PA. The dark side of C5a in sepsis. Nat Rev Immunol. 2004; 4: 133 – 142.
dc.identifier.citedreferenceGuo RF, Riedemann NC, Ward PA. Role of C5a‐C5aR interaction in sepsis. Shock. 2004; 21: 1 – 7.
dc.identifier.citedreferenceFattahi F, Grailer JJ, Jajou L, Zetoune FS, Andjelkovic AV, Ward PA. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis. Immunol Res. 2015; 61: 177 – 186.
dc.identifier.citedreferenceBosmann M, Grailer JJ, Ruemmler R, et al. Extracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury. FASEB J. 2013; 27: 5010 – 5021.
dc.identifier.citedreferenceGrailer JJ, Canning BA, Kalbitz M, et al. Critical role for the NLRP3 inflammasome during acute lung injury. J Immunol. 2014; 192: 5974 – 5983.
dc.identifier.citedreferenceFattahi F, Grailer JJ, Lu H, et al. Selective biological responses of phagocytes and lungs to purified histones. J Innate Immun. 2017; 9: 300 – 317.
dc.identifier.citedreferenceSuresh R, Chandrasekaran P, Sutterwala FS, Mosser DM. Complement‐mediated ‘bystander’ damage initiates host NLRP3 inflammasome activation. J Cell Sci. 2016; 129: 1928 – 1939.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.