Show simple item record

SLC35A2â CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals

dc.contributor.authorNg, Bobby G.
dc.contributor.authorSosicka, Paulina
dc.contributor.authorAgadi, Satish
dc.contributor.authorAlmannai, Mohammed
dc.contributor.authorBacino, Carlos A.
dc.contributor.authorBarone, Rita
dc.contributor.authorBotto, Lorenzo D.
dc.contributor.authorBurton, Jennifer E.
dc.contributor.authorCarlston, Colleen
dc.contributor.authorChung, Brian Hon‐yin
dc.contributor.authorCohen, Julie S.
dc.contributor.authorComan, David
dc.contributor.authorDipple, Katrina M.
dc.contributor.authorDorrani, Naghmeh
dc.contributor.authorDobyns, William B.
dc.contributor.authorElias, Abdallah F.
dc.contributor.authorEpstein, Leon
dc.contributor.authorGahl, William A.
dc.contributor.authorGarozzo, Domenico
dc.contributor.authorHammer, Trine Bjørg
dc.contributor.authorHaven, Jaclyn
dc.contributor.authorHéron, Delphine
dc.contributor.authorHerzog, Matthew
dc.contributor.authorHoganson, George E.
dc.contributor.authorHunter, Jesse M.
dc.contributor.authorJain, Mahim
dc.contributor.authorJuusola, Jane
dc.contributor.authorLakhani, Shenela
dc.contributor.authorLee, Hane
dc.contributor.authorLee, Joy
dc.contributor.authorLewis, Katherine
dc.contributor.authorLongo, Nicola
dc.contributor.authorLourenço, Charles Marques
dc.contributor.authorMak, Christopher C.Y.
dc.contributor.authorMcKnight, Dianalee
dc.contributor.authorMendelsohn, Bryce A.
dc.contributor.authorMignot, Cyril
dc.contributor.authorMirzaa, Ghayda
dc.contributor.authorMitchell, Wendy
dc.contributor.authorMuhle, Hiltrud
dc.contributor.authorNelson, Stanley F.
dc.contributor.authorOlczak, Mariusz
dc.contributor.authorPalmer, Christina G.S.
dc.contributor.authorPartikian, Arthur
dc.contributor.authorPatterson, Marc C.
dc.contributor.authorPierson, Tyler M.
dc.contributor.authorQuinonez, Shane C.
dc.contributor.authorRegan, Brigid M.
dc.contributor.authorRoss, M. Elizabeth
dc.contributor.authorGuillen Sacoto, Maria J.
dc.contributor.authorScaglia, Fernando
dc.contributor.authorScheffer, Ingrid E.
dc.contributor.authorSegal, Devorah
dc.contributor.authorSinghal, Nilika Shah
dc.contributor.authorStriano, Pasquale
dc.contributor.authorSturiale, Luisa
dc.contributor.authorSymonds, Joseph D.
dc.contributor.authorTang, Sha
dc.contributor.authorVilain, Eric
dc.contributor.authorWillis, Mary
dc.contributor.authorWolfe, Lynne A.
dc.contributor.authorYang, Hui
dc.contributor.authorYano, Shoji
dc.contributor.authorPowis, Zöe
dc.contributor.authorSuchy, Sharon F.
dc.contributor.authorRosenfeld, Jill A.
dc.contributor.authorEdmondson, Andrew C.
dc.contributor.authorGrunewald, Stephanie
dc.contributor.authorFreeze, Hudson H.
dc.date.accessioned2019-08-09T17:12:40Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-08-09T17:12:40Z
dc.date.issued2019-07
dc.identifier.citationNg, Bobby G.; Sosicka, Paulina; Agadi, Satish; Almannai, Mohammed; Bacino, Carlos A.; Barone, Rita; Botto, Lorenzo D.; Burton, Jennifer E.; Carlston, Colleen; Chung, Brian Hon‐yin ; Cohen, Julie S.; Coman, David; Dipple, Katrina M.; Dorrani, Naghmeh; Dobyns, William B.; Elias, Abdallah F.; Epstein, Leon; Gahl, William A.; Garozzo, Domenico; Hammer, Trine Bjørg ; Haven, Jaclyn; Héron, Delphine ; Herzog, Matthew; Hoganson, George E.; Hunter, Jesse M.; Jain, Mahim; Juusola, Jane; Lakhani, Shenela; Lee, Hane; Lee, Joy; Lewis, Katherine; Longo, Nicola; Lourenço, Charles Marques ; Mak, Christopher C.Y.; McKnight, Dianalee; Mendelsohn, Bryce A.; Mignot, Cyril; Mirzaa, Ghayda; Mitchell, Wendy; Muhle, Hiltrud; Nelson, Stanley F.; Olczak, Mariusz; Palmer, Christina G.S.; Partikian, Arthur; Patterson, Marc C.; Pierson, Tyler M.; Quinonez, Shane C.; Regan, Brigid M.; Ross, M. Elizabeth; Guillen Sacoto, Maria J.; Scaglia, Fernando; Scheffer, Ingrid E.; Segal, Devorah; Singhal, Nilika Shah; Striano, Pasquale; Sturiale, Luisa; Symonds, Joseph D.; Tang, Sha; Vilain, Eric; Willis, Mary; Wolfe, Lynne A.; Yang, Hui; Yano, Shoji; Powis, Zöe ; Suchy, Sharon F.; Rosenfeld, Jill A.; Edmondson, Andrew C.; Grunewald, Stephanie; Freeze, Hudson H. (2019). "SLC35A2â CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals." Human Mutation 40(7): 908-925.
dc.identifier.issn1059-7794
dc.identifier.issn1098-1004
dc.identifier.urihttps://hdl.handle.net/2027.42/150498
dc.description.abstractPathogenic de novo variants in the Xâ linked gene SLC35A2 encoding the major Golgiâ localized UDPâ galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2â congenital disorders of glycosylation (CDG; formerly CDGâ IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin Nâ glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2â CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2â dependent UDPâ galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wildâ type to mutant alleles in fibroblasts from affected individuals.
dc.publisherWiley Periodicals, Inc.
dc.publisherCold Spring Harbor
dc.subject.othercongenital disorders of glycosylation
dc.subject.otherglycoside
dc.subject.othernucleotide sugar transporter
dc.subject.otherUDPâ galactose
dc.titleSLC35A2â CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150498/1/humu23731_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150498/2/humu23731-sup-0001-Supp_Mat__2019.2.10_.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150498/3/humu23731.pdf
dc.identifier.doi10.1002/humu.23731
dc.identifier.sourceHuman Mutation
dc.identifier.citedreferenceBrandli, A. W., Hansson, G. C., Rodriguezâ Boulan, E., & Simons, K. ( 1988 ). A polarized epithelial cell mutant deficient in translocation of UDPâ galactose into the Golgi complex. Journal of Biological Chemistry, 263 ( 31 ), 16283 â 16290.
dc.identifier.citedreferenceAllen, R. C., Zoghbi, H. Y., Moseley, A. B., Rosenblatt, H. M., & Belmont, J. W. ( 1992 ). Methylation of Hpa II and Hha I sites near the polymorphic CAG repeat in the human androgenâ receptor gene correlates with X chromosome inactivation. American Journal of Human Genetics, 51 ( 6 ), 1229 â 1239.
dc.identifier.citedreferenceEuroEPINOMICSâ RES Consortium, Epilepsy Phenome/Genome Project, & Epi4K Consortium ( 2014 ). De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. American Journal of Human Genetics, 95 ( 4 ), 360 â 370. https://doi.org/10.1016/j.ajhg.2014.08.013
dc.identifier.citedreferenceEtchison, J. R., Srikrishna, G., & Freeze, H. H. ( 1995 ). A novel method to coâ localize glycosaminoglycanâ core oligosaccharide glycosyltransferases in rat liver Golgi. Coâ localization of galactosyltransferase I with a sialyltransferase. Journal of Biological Chemistry, 270 ( 2 ), 756 â 764.
dc.identifier.citedreferenceEtchison, J. R., & Freeze, H. H. ( 1996 ). A new approach to mapping coâ localization of multiple glycosyl transferases in functional Golgi preparations. Glycobiology, 6 ( 2 ), 177 â 189.
dc.identifier.citedreferenceDorre, K., Olczak, M., Wada, Y., Sosicka, P., Gruneberg, M., Reunert, J., & Marquardt, T. ( 2015 ). A new case of UDPâ galactose transporter deficiency (SLC35A2â CDG): Molecular basis, clinical phenotype, and therapeutic approach. Journal of Inherited Metabolic Disease, 38 ( 5 ), 931 â 940. https://doi.org/10.1007/s10545â 015â 9828â 6
dc.identifier.citedreferenceDeutscher, S. L., Nuwayhid, N., Stanley, P., Briles, E. I., & Hirschberg, C. B. ( 1984 ). Translocation across Golgi vesicle membranes: A CHO glycosylation mutant deficient in CMPâ sialic acid transport. Cell, 39 ( 2 Pt 1 ), 295 â 299.
dc.identifier.citedreferenceBruneel, A., Cholet, S., Drouinâ Garraud, V., Jacquemont, M. L., Cano, A., Megarbane, A., & Fenaille, F. ( 2018 ). Complementarity of electrophoretic, mass spectrometric, and gene sequencing techniques for the diagnosis and characterization of congenital disorders of glycosylation. Electrophoresis, 39, 3123 â 3132. https://doi.org/10.1002/elps.201800021
dc.identifier.citedreferenceBrockhausen, I., & Stanley, P. ( 2015 ). Oâ GalNAc glycans. In A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, & P. H. Seeberger (Eds.), Essentials of Glycobiology ( pp. 113 â 123 ). New York, NY: Cold Spring Harbor.
dc.identifier.citedreferenceBosch, D. G., Boonstra, F. N., de Leeuw, N., Pfundt, R., Nillesen, W. M., de Ligt, J., & de Vries, B. B. ( 2016 ). Novel genetic causes for cerebral visual impairment. European Journal of Human Genetics, 24 ( 5 ), 660 â 665. https://doi.org/10.1038/ejhg.2015.186
dc.identifier.citedreferenceYates, T. M., Suri, M., Desurkar, A., Lesca, G., Wallgrenâ Pettersson, C., Hammer, T. B., & Balasubramanian, M. ( 2018 ). SLC35A2â related congenital disorder of glycosylation: Defining the phenotype. European Journal of Paediatric Neurology, 22, 1095 â 1102. https://doi.org/10.1016/j.ejpn.2018.08.002
dc.identifier.citedreferenceXia, B., Zhang, W., Li, X., Jiang, R., Harper, T., Liu, R., & He, M. ( 2013 ). Serum Nâ glycan and Oâ glycan analysis by mass spectrometry for diagnosis of congenital disorders of glycosylation. Analytical Biochemistry, 442 ( 2 ), 178 â 185. https://doi.org/10.1016/j.ab.2013.07.037
dc.identifier.citedreferenceWinawer, M. R., Griffin, N. G., Samanamud, J., Baugh, E. H., Rathakrishnan, D., Ramalingam, S., & Heinzen, E. L. ( 2018 ). Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Annals of Neurology, 83 ( 6 ), 1133 â 1146. https://doi.org/10.1002/ana.25243
dc.identifier.citedreferenceWestenfield, K., Sarafoglou, K., Speltz, L. C., Pierpont, E. I., Steyermark, J., Nascene, D., & Pierpont, M. E. ( 2018 ). Mosaicism of the UDPâ Galactose transporter SLC35A2 in a female causing a congenital disorder of glycosylation: A case report. BMC Medical Genetics, 19 ( 1 ), 100. https://doi.org/10.1186/s12881â 018â 0617â 6
dc.identifier.citedreferenceVals, M. A., Ashikov, V., Ilves, P., Loorits, D., Zeng, Q.,  Barone, R., & Ounap, K. ( 2019 ). Clinical, neuroradiological, and biochemical features of SLC35A2â CDG patients. J Inherit Metab Dis. https://doi.org/10.1002/jimd.12055
dc.identifier.citedreferenceToma, L., Pinhal, M. A., Dietrich, C. P., Nader, H. B., & Hirschberg, C. B. ( 1996 ). Transport of UDPâ galactose into the Golgi lumen regulates the biosynthesis of proteoglycans. Journal of Biological Chemistry, 271 ( 7 ), 3897 â 3901.
dc.identifier.citedreferenceStanley, P., Taniguchi, N., & Aebi, M. ( 2015 ). Nâ Glycans. In A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, A. G. Darvill, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, & P. H. Seeberger (Eds.), Essentials of Glycobiology ( pp. 99 â 111 ). NY: Cold Spring Harbor.
dc.identifier.citedreferenceStanley, P. ( 1981 ). Selection of specific wheat germ agglutininâ resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Molecular and Cellular Biology, 1 ( 8 ), 687 â 696.
dc.identifier.citedreferenceSosicka, P., Bazan, B., Maszczakâ Seneczko, D., Shauchuk, Y., Olczak, T., & Olczak, M. ( 2019 ). SLC35A5 protein â A golgi complex member with putative nucleotide sugar transport activity. Int J Mol Sci, 20 ( 2 ), 276. https://doi.org/.org/10.3390/ijms20020276
dc.identifier.citedreferenceSosicka, P., Maszczakâ Seneczko, D., Bazan, B., Shauchuk, Y., Kaczmarek, B., & Olczak, M. ( 2017 ). An insight into the orphan nucleotide sugar transporter SLC35A4. Biochimica et Biophysica Acta, Molecular Cell Research, 1864 ( 5 ), 825 â 838. https://doi.org/10.1016/j.bbamcr.2017.02.002
dc.identifier.citedreferenceSosicka, P., Jakimowicz, P., Olczak, T., & Olczak, M. ( 2014 ). Short Nâ terminal region of UDPâ galactose transporter (SLC35A2) is crucial for galactosylation of Nâ glycans. Biochemical and Biophysical Research Communications, 454 ( 4 ), 486 â 492. https://doi.org/10.1016/j.bbrc.2014.10.098
dc.identifier.citedreferenceSim, N. S., Seo, Y., Lim, J. S., Kim, W. K., Son, H., Kim, H. D., & Lee, J. H. ( 2018 ). Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant Nâ glycosylation. Neurology: Genetics, 4 ( 6 ), e294. https://doi.org/10.1212/NXG.0000000000000294
dc.identifier.citedreferenceSchnaar, R. L., & Kinoshita, T. ( 2015 ). Glycosphingolipids. In A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, A. G. Darvill, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, & P. H. Seeberger (Eds.), Essentials of Glycobiology ( pp. 125 â 135 ). NY: Cold Spring Harbor.
dc.identifier.citedreferenceSarkar, A. K., Rostand, K. S., Jain, R. K., Matta, K. L., & Esko, J. D. ( 1997 ). Fucosylation of disaccharide precursors of sialyl LewisX inhibit selectinâ mediated cell adhesion. Journal of Biological Chemistry, 272 ( 41 ), 25608 â 25616.
dc.identifier.citedreferenceSarkar, A. K., Fritz, T. A., Taylor, W. H., & Esko, J. D. ( 1995 ). Disaccharide uptake and priming in animal cells: Inhibition of sialyl Lewis X by acetylated Gal beta 1â >4GlcNAc betaâ Oâ naphthalenemethanol. Proceedings of the National Academy of Sciences of the United States of America, 92 ( 8 ), 3323 â 3327.
dc.identifier.citedreferencePortner, A., Etchison, J. R., Sampath, D., & Freeze, H. H. ( 1996 ). Human melanoma and Chinese hamster ovary cells galactosylate nâ alkylâ betaâ glucosides using UDP gal:GlcNAc beta 1,4 galactosyltransferase. Glycobiology, 6 ( 1 ), 7 â 13.
dc.identifier.citedreferenceParker, J. L., & Newstead, S. ( 2017 ). Structural basis of nucleotide sugar transport across the Golgi membrane. Nature, 551 ( 7681 ), 521 â 524. https://doi.org/10.1038/nature24464
dc.identifier.citedreferenceOlczak, M., & Guillen, E. ( 2006 ). Characterization of a mutation and an alternative splicing of UDPâ galactose transporter in MDCKâ RCAr cell line. Biochimica et Biophysica Acta/General Subjects, 1763 ( 1 ), 82 â 92. https://doi.org/10.1016/j.bbamcr.2005.12.006
dc.identifier.citedreferenceOelmann, S., Stanley, P., & Gerardyâ Schahn, R. ( 2001 ). Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDPâ galactose and CMPâ sialic acid transporters. Journal of Biological Chemistry, 276 ( 28 ), 26291 â 26300. https://doi.org/10.1074/jbc.M011124200
dc.identifier.citedreferenceNg, B. G., Buckingham, K. J., Raymond, K., Kircher, M., Turner, E. H., He, M., & Freeze, H. H. ( 2013 ). Mosaicism of the UDPâ galactose transporter SLC35A2 causes a congenital disorder of glycosylation. American Journal of Human Genetics, 92 ( 4 ), 632 â 636. https://doi.org/10.1016/j.ajhg.2013.03.012
dc.identifier.citedreferenceNg, B. G., & Freeze, H. H. ( 2018 ). Perspectives on glycosylation and Its congenital disorders. Trends in Genetics, 34 ( 6 ), 466 â 476. https://doi.org/10.1016/j.tig.2018.03.002
dc.identifier.citedreferenceMiura, N., Ishida, N., Hoshino, M., Yamauchi, M., Hara, T., Ayusawa, D., & Kawakita, M. ( 1996 ). Human UDPâ galactose translocator: Molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDPâ galactose translocator. Journal of Biochemistry, 120 ( 2 ), 236 â 241.
dc.identifier.citedreferenceMaszczakâ Seneczko, D., Olczak, T., Jakimowicz, P., & Olczak, M. ( 2011 ). Overexpression of UDPâ GlcNAc transporter partially corrects galactosylation defect caused by UDPâ Gal transporter mutation. FEBS Letters, 585 ( 19 ), 3090 â 3094. https://doi.org/10.1016/j.febslet.2011.08.038
dc.identifier.citedreferenceMaszczakâ Seneczko, D., Olczak, T., Wunderlich, L., & Olczak, M. ( 2011 ). Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDPâ galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines. Glycoconjugate Journal, 28 ( 7 ), 481 â 492. https://doi.org/10.1007/s10719â 011â 9348â z
dc.identifier.citedreferencede Lonlay, P., Seta, N., Barrot, S., Chabrol, B., Drouin, V., Gabriel, B. M., & Cormierâ Daire, V. ( 2001 ). A broad spectrum of clinical presentations in congenital disorders of glycosylation I: A series of 26 cases. Journal of Medical Genetics, 38 ( 1 ), 14 â 19.
dc.identifier.citedreferenceLindahl, U., Couchman, J., Kimata, K., & Esko, J. D. ( 2015 ). Proteoglycans and sulfated glycosaminoglycans. In A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, A. G. Darvill, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, & P. H. Seeberger (Eds.), Essentials of Glycobiology ( pp. 207 â 221 ). New York, NY: Cold Spring Harbor.
dc.identifier.citedreferenceLelieveld, S. H., Reijnders, M. R., Pfundt, R., Yntema, H. G., Kamsteeg, E. J., de Vries, P., & Gilissen, C. ( 2016 ). Metaâ analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nature Neuroscience, 19 ( 9 ), 1194 â 1196. https://doi.org/10.1038/nn.4352
dc.identifier.citedreferenceLacey, J. M., Bergen, H. R., Magera, M. J., Naylor, S., & O’Brien, J. F. ( 2001 ). Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry. Clinical Chemistry, 47 ( 3 ), 513 â 518.
dc.identifier.citedreferenceKodera, H., Nakamura, K., Osaka, H., Maegaki, Y., Haginoya, K., Mizumoto, S., & Saitsu, H. ( 2013 ). De novo mutations in SLC35A2 encoding a UDPâ galactose transporter cause earlyâ onset epileptic encephalopathy. Human Mutation, 34 ( 12 ), 1708 â 1714. https://doi.org/10.1002/humu.22446
dc.identifier.citedreferenceKircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., & Shendure, J. ( 2014 ). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46 ( 3 ), 310 â 315. https://doi.org/10.1038/ng.2892
dc.identifier.citedreferenceKimizu, T., Takahashi, Y., Oboshi, T., Horino, A., Koike, T., Yoshitomi, S., & Imai, K. ( 2017 ). A case of early onset epileptic encephalopathy with de novo mutation in SLC35A2: Clinical features and treatment for epilepsy. Brain and Development, 39 ( 3 ), 256 â 260. https://doi.org/10.1016/j.braindev.2016.09.009
dc.identifier.citedreferenceKim, S., Miura, Y., Etchison, J. R., & Freeze, H. H. ( 2001 ). Intact Golgi synthesize complex branched Oâ linked chains on glycoside primers: Evidence for the functional continuity of seven glycosyltransferases and three sugar nucleotide transporters. Glycoconjugate Journal, 18 ( 8 ), 623 â 633.
dc.identifier.citedreferenceKelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. ( 2015 ). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10 ( 6 ), 845 â 858. https://doi.org/10.1038/nprot.2015.053
dc.identifier.citedreferenceIshida, N., Yoshioka, S., Iida, M., Sudo, K., Miura, N., Aoki, K., & Kawakita, M. ( 1999 ). Indispensability of transmembrane domains of Golgi UDPâ galactose transporter as revealed by analysis of genetic defects in UDPâ galactose transporterâ deficient murine hadâ 1 mutant cell lines and construction of deletion mutants. Journal of Biochemistry, 126 ( 6 ), 1107 â 1117.
dc.identifier.citedreferenceIshida, N., Miura, N., Yoshioka, S., & Kawakita, M. ( 1996 ). Molecular cloning and characterization of a novel isoform of the human UDPâ galactose transporter, and of related complementary DNAs belonging to the nucleotideâ sugar transporter gene family. Journal of Biochemistry, 120 ( 6 ), 1074 â 1078.
dc.identifier.citedreferenceIchikawa, M., Scott, D. A., Losfeld, M. E., & Freeze, H. H. ( 2014 ). The metabolic origins of mannose in glycoproteins. Journal of Biological Chemistry, 289 ( 10 ), 6751 â 6761. https://doi.org/10.1074/jbc.M113.544064
dc.identifier.citedreferenceHayes, B. K., Freeze, H. H., & Varki, A. ( 1993 ). Biosynthesis of oligosaccharides in intact Golgi preparations from rat liver. Analysis of Nâ linked glycans labeled by UDPâ [6â 3H]Nâ acetylglucosamine. Journal of Biological Chemistry, 268 ( 22 ), 16139 â 16154.
dc.identifier.citedreferenceHara, T., Yamauchi, M., Takahashi, E., Hoshino, M., Aoki, K., Ayusawa, D., & Kawakita, M. ( 1993 ). The UDPâ galactose translocator gene is mapped to band Xp11.23â p11.22 containing the Wiskottâ Aldrich syndrome locus. Somatic Cell and Molecular Genetics, 19 ( 6 ), 571 â 575.
dc.identifier.citedreferenceGuillen, E., Abeijon, C., & Hirschberg, C. B. ( 1998 ). Mammalian Golgi apparatus UDPâ Nâ acetylglucosamine transporter: Molecular cloning by phenotypic correction of a yeast mutant. Proceedings of the National Academy of Sciences of the United States of America, 95 ( 14 ), 7888 â 7892.
dc.identifier.citedreferenceGrunewald, S. ( 2009 ). The clinical spectrum of phosphomannomutase 2 deficiency (CDGâ Ia). Biochimica et Biophysica Acta/General Subjects, 1792 ( 9 ), 827 â 834. https://doi.org/10.1016/j.bbadis.2009.01.003
dc.identifier.citedreferenceGalupa, R., & Heard, E. ( 2018 ). Xâ chromosome inactivation: A crossroads between chromosome architecture and gene regulation. Annual Review of Genetics, 52, 535 â 566. https://doi.org/10.1146/annurevâ genetâ 120116â 024611
dc.identifier.citedreferenceFreeze, H. H., Eklund, E. A., Ng, B. G., & Patterson, M. C. ( 2015 ). Neurological aspects of human glycosylation disorders. Annual Review of Neuroscience, 38, 105 â 125. https://doi.org/10.1146/annurevâ neuroâ 071714â 034019
dc.identifier.citedreferenceFreeze, H. H., Eklund, E. A., Ng, B. G., & Patterson, M. C. ( 2012 ). Neurology of inherited glycosylation disorders. Lancet Neurology, 11 ( 5 ), 453 â 466. https://doi.org/10.1016/S1474â 4422(12)70040â 6
dc.identifier.citedreferenceFreeze, H. H. ( 2006 ). Genetic defects in the human glycome. Nature Reviews Genetics, 7 ( 7 ), 537 â 551. https://doi.org/10.1038/nrg1894
dc.identifier.citedreferenceFerreira, C. R., Altassan, R., Marquesâ Daâ Silva, D., Francisco, R., Jaeken, J., & Morava, E. ( 2018 ). Recognizable phenotypes in CDG. Journal of Inherited Metabolic Disease, 41 ( 3 ), 541 â 553. https://doi.org/10.1007/s10545â 018â 0156â 5
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.