Show simple item record

Random Copolymers Outperform Gradient and Block Copolymers in Stabilizing Organic Photovoltaics

dc.contributor.authorKong, Chen
dc.contributor.authorSong, Byeongseop
dc.contributor.authorMueller, Emily A.
dc.contributor.authorKim, Jinsang
dc.contributor.authorMcNeil, Anne J.
dc.date.accessioned2019-08-09T17:12:53Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-08-09T17:12:53Z
dc.date.issued2019-06
dc.identifier.citationKong, Chen; Song, Byeongseop; Mueller, Emily A.; Kim, Jinsang; McNeil, Anne J. (2019). "Random Copolymers Outperform Gradient and Block Copolymers in Stabilizing Organic Photovoltaics." Advanced Functional Materials 29(26): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/150505
dc.description.abstractRecent advances have led to conjugated polymer‐based photovoltaic devices with efficiencies rivaling amorphous silicon. Nevertheless, these devices become less efficient over time due to changes in active layer morphology, thereby hindering their commercialization. Copolymer additives are a promising approach toward stabilizing blend morphologies; however, little is known about the impact of copolymer sequence, composition, and concentration. Herein, the impact of these parameters is determined by synthesizing random, block, and gradient copolymers with a poly(3‐hexylthiophene) (P3HT) backbone and side‐chain fullerenes (phenyl‐C61‐butyric acid methyl ester (PC61BM)). These copolymers are evaluated as compatibilizers in photovoltaic devices with P3HT:PC61BM as the active layer. The random copolymer with 20 mol% fullerene side chains and at 8 wt% concentration in the blend gives the most stable morphologies. Devices containing the random copolymer also exhibit higher and more stable power conversion efficiencies than the control device. Combined, these studies point to the random copolymer as a promising new scaffold for stabilizing bulk heterojunction photovoltaics.Photovoltaic devices made from conjugated polymers now exhibit efficiencies rivaling amorphous silicon; however, the poor longevity of these devices continues to stymie their commercial impact. Copolymer additives represent a promising solution, yet little is known about how the copolymer sequence, composition, and concentration influence their compatibilizing abilities. Herein, random copolymer additives lead to higher efficiency and longer‐lasting photovoltaic devices.
dc.publisherAmerican Chemical Society
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlong‐term stability
dc.subject.otherpolymer blends
dc.subject.othercatalyst‐transfer polymerization
dc.subject.otherorganic photovoltaics
dc.subject.otherfullerenes
dc.subject.otherbulk‐heterojunctions
dc.subject.otherconjugated polymers
dc.titleRandom Copolymers Outperform Gradient and Block Copolymers in Stabilizing Organic Photovoltaics
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150505/1/adfm201900467.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150505/2/adfm201900467_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150505/3/adfm201900467-sup-0001-S1.pdf
dc.identifier.doi10.1002/adfm.201900467
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferencea) F. Pierini, M. Lanzi, P. Nakielski, S. Pawlowska, O. Urbanek, K. Zembrzcyki, T. A. Kowalewski, Macromolecules 2017, 50, 4972; b) M. Lanzi, E. Salatelli, T. Benelli, D. Caretti, L. Giorgini, F. P. Di‐Nicola, J. Appl. Polym. Sci. 2015, 132, 42121.
dc.identifier.citedreferenceCopolymers with >50 mol% side‐chain fullerenes were largely insoluble in THF and not pursued further.
dc.identifier.citedreferenceFor recent examples, see: a) M. Xiao, K. Zhang, Y. Jin, Q. Yin, W. Zhong, F. Huang, Y. Cao, Nano Energy 2018, 48, 53; b) G. Sai‐Anand, A. Dubey, A.‐I. Gopalan, S. Venkatesan, S. Ruban, K. M. Reza, J. Choi, K. S. Lakhi, B. Xu, Q. Qiao, A. Vinu, Sol. Energy Mater. Sol. Cells 2018, 182, 246; c) A. Rahmanudin, X. A. Jeanbourquin, S. Hänni, A. Sekar, E. Ripaud, L. Yaoa, K. Sivula, J. Mater. Chem. A 2017, 5, 17517; d) H. Li, K. Lu, Z. Wei, Adv. Energy Mater. 2017, 7, 1602540; e) P. Cheng, C. Yan, T‐K. Lau, J. Mai, X. Lu, X. Zhan, Adv. Mater. 2016, 28, 5822; f) P. Cheng, Q. Shi, X. Zhan, Acta Chim. Sin. 2015, 73, 252; g) W. Zhou, J. Shi, L. Lv, L. Chen, Y. Chen, Phys. Chem. Chem. Phys. 2015, 17, 387; h) J. Yang, W. He, K. Denman, Y. Jiang, Y. Qin, J. Mater. Chem. A 2015, 3, 2108; i) Q. An, F. Zhang, L. Li, J. Wang, Q. Sun, J. Zhang, W. Tang, Z. Deng, ACS Appl. Mater. Interfaces 2015, 7, 3691; j) W. Nie, G. Gupta, B. K. Crone, F. Liu, D. L. Smith, P. P. Ruden, C.‐Y. Kuo, H. Tsai, H.‐L. Wang, H. Li, S. Tretiak, A. D. Mohite, Adv. Sci. 2015, 2, 1500024; k) S. Wang, Y. Qu, S. Li, F. Ye, Z. Chen, X. Yang, Adv. Funct. Mater. 2015, 25, 748.
dc.identifier.citedreferenceFor recent reviews, see: a) D. Kipp, R. Verduzco, V. Ganesan, Mol. Syst. Des. Eng. 2016, 1, 353; b) K. Yuan, L. Chen, Y. Chen, Polym. Int. 2014, 63, 593; c) See also, ref. [9a].
dc.identifier.citedreferenceFor recent examples, see: a) C. Sartorio, V. Campisciano, C. Chiappara, S. Cataldo, M. Scopelliti, M. Gruttadauria, F. Giacalone, B. Pignataro, J. Mater. Chem. A 2018, 6, 3884; b) Y. Sun, P. Pitliya, C. Liu, X. Gong, D. Raghavan, A. Karim, Polymer 2017, 113, 135; c) D. Kipp, O. Wodo, B. Ganapathysubramanian, V. Ganesan, Sol. Energy Mater. Sol. Cells 2017, 161, 206; d) F. Lombeck, A. Sepe, R. Thomann, R. H. Friend, M. Sommer, ACS Nano 2016, 10, 8087; e) H. Fujita, T. Michinobu, S. Fukuta, T. Koganezawa, T. Higashihara, ACS Appl. Mater. Interfaces 2016, 8, 5484; f) S. Kakogianni, A. K. Andreopoulou, J. K. Kallitsis, Polymers 2016, 8, 440; g) D. Kipp, V. Ganesan, Macromolecules 2016, 49, 5137; h) S. Kakogianni, M. A. Lebedeva, G. Paloumbis, A. K. Andreopoulou, K. Porfyrakis, J. K. Kallitsis, RSC Adv. 2016, 6, 98306; i) J. W. Mok, D. Kipp, L. R. Hasbun, A. Dolocan, J. Strzalka, V. Ganesan, R. Verduzco, J. Mater. Chem. A 2016, 4, 14804; j) J. Liu, X. Zhu, J. Li, J. Shen, G. Tu, RSC Adv. 2016, 6, 61934; k) K. H. Park, Y. An, S. Jung, H. Park, C. Yang, Energy Environ. Sci. 2016, 9, 3464; l) E. Bicciocchi, M. Haeussler, E. Rizzardo, A. D. Scully, K. P. Ghiggino, J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 888; m) M. Raïssi, H. Erothu, E. Ibarboure, H. Cramail, L. Vignau, E. Cloutet, R. C. Hiorns, J. Mater. Chem. A 2015, 3, 18207; n) D. Kipp, J. Mok, J. Strzalka, S. B. Darling, V. Ganesan, R. Verduzco, ACS Macro Lett. 2015, 4, 867.
dc.identifier.citedreferenceA. Li, J. Amonoo, B. Huang, P. K. Goldberg, A. J. McNeil, P. F. Green, Adv. Funct. Mater. 2014, 24, 5594.
dc.identifier.citedreferencea) J. A. Amonoo, A. Li, G. E. Purdum, M. E. Sykes, B. Huang, E. F. Palermo, A. J. McNeil, M. Shtein, Y.‐L. Loo, P. F. Green, J. Mater. Chem. A 2015, 3, 20174; b) E. F. Palermo, A. J. McNeil, in Sequence‐Controlled Polymers: Synthesis, Self‐Assembly, and Properties, ACS Symposium Series, Vol. 1170 (Eds: H. Baltes, W. Göpel, J. Hesse ), American Chemical Society, Washington, DC 2014, Ch. 19; c) E. F. Palermo, H. L. van der Laan, A. J. McNeil, Polym. Chem. 2013, 4, 4606; d) E. F. Palermo, A. J. McNeil, Macromolecules 2012, 45, 5948; e) J. R. Locke, A. J. McNeil, Macromolecules 2010, 43, 8709.
dc.identifier.citedreferenceE. F. Palermo, S. B. Darling, A. J. McNeil, J. Mater. Chem. C 2014, 2, 3401.
dc.identifier.citedreferenceFor recent reviews, see: a) M. A. Baker, C.‐H. Tsai, K. J. T. Noonan, Chem. ‐ Eur. J. 2018, 24, 13078; b) A. K. Leone, A. J. McNeil, Acc. Chem. Res. 2016, 49, 2822; c) T. Yokozawa, Y. Ohta, Chem. Rev. 2016, 116, 1950; d) R. Grisorio, G. P. Suranna, Polym. Chem. 2015, 6, 7781; e) Z. J. Bryan, A. J. McNeil, Macromolecules 2013, 46, 8395.
dc.identifier.citedreferencea) H. A. Brontstein, C. K. Luscombe, J. Am. Chem. Soc. 2009, 131, 12894; b) N. Doubina, A. Ho, A. K.‐Y. Jen, C. K. Luscombe, Macromolecules 2009, 42, 7670; c) V. Senkovskyy, R. Tkachov, T. Beryozkina, H. Komber, U. Oertel, M. Horecha, V. Bocharova, M. Stamm, S. A. Gevorgyan, F. C. Krebs, A. Kiriy, J. Am. Chem. Soc. 2009, 131, 16445; d) V. Senkovskyy, M. Sommer, R. Tkachov, H. Komber, W. T. S. Huck, A. Kiriy, Macromolecules 2010, 43, 10157.
dc.identifier.citedreferenceSee also: a) A. O. Hall, S. R. Lee, A. N. Bootsma, J. W. G. Bloom, S. E. Wheeler, A. J. McNeil, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1530; b) S. R. Lee, J. W. G. Bloom, S. E. Wheeler, A. J. McNeil, Dalton Trans. 2013, 42, 4218; c) E. L. Lanni, A. J. McNeil, J. Am. Chem. Soc. 2009, 131, 16573.
dc.identifier.citedreferenceFor a related structure, see: S. H. Chan, C. S. Lai, H. L. Chen, C. Ting, C. P. Chen, Macromolecules 2011, 44, 8886.
dc.identifier.citedreferenceAll copolymerizations presented in Figure were conducted under N (outside the glovebox) at 0 °C so that the slower reaction rate would enable adequate time between aliquots.
dc.identifier.citedreferenceM. Wong, J. Hollinger, L. M. Kozycz, T. M. McCormick, Y. Lu, D. C. Burns, D. S. Seferos, ACS Macro Lett. 2012, 1, 1266.
dc.identifier.citedreferenceSee also: L. Zhai, R. L. Pilston, K. L. Zaiger, K. K. Stokes, R. D. McCullough, Macromolecules 2003, 36, 61.
dc.identifier.citedreferenceFor a recent review, see: C. J. Pickens, S. N. Johnson, M. M. Pressnall, M. A. Leon, C. J. Berkland, Bioconjugate Chem. 2018, 29, 686.
dc.identifier.citedreferenceS.‐H. Chan, C.‐S. Lai, H.‐L. Chen, C. Ting, C.‐P. Chen, Macromolecules 2011, 44, 8886.
dc.identifier.citedreferenceM. Li, P. Xu, J. Yang, S. Yang, J. Mater. Chem. 2010, 20, 3953.
dc.identifier.citedreferenceM. Chen, M. Li, H. Wang, S. Qu, X. Zhao, L. Xie, S. Yang, Polym. Chem. 2013, 4, 550.
dc.identifier.citedreferenceB. Yameen, T. Puerchkhauer, J. Ludwig, I. Ahmed, O. Altintas, L. Fruk, A. Colsmann, C. Barner‐Kowollik, Small 2014, 10, 3091.
dc.identifier.citedreferenceAn exothermic peak was observed at temperatures >150 °C during DSC analysis of some fullerene‐functionalized copolymers (Figures S66 and S67, Supporting Information). After DSC analysis, the samples were completely insoluble in CDCl 3. We tentatively attributed this nonreversible event to a crosslinking reaction involving side‐chain azides (<5% by IR spectroscopy) reacting with fullerene. Fortunately, this reaction does not occur if the copolymer samples are heated to the device annealing temperature (150 °C). After DSC analysis, the resulting copolymers fully dissolve in CDCl 3 and the 1 H NMR spectra are identical to the samples before analysis (Figure S67, Supporting Information).
dc.identifier.citedreferenceA. Torreggiani, F. Tinti, A. Savoini, M. Melchiorre, R. Po, N. Camaioni, Org. Photonics Photovoltaics 2014, 2, 50.
dc.identifier.citedreferencea) J. Zhao, A. Swinnen, G. Van Assche, J. Manca, D. Vanderzande, B. Van Mele, J. Phys. Chem. B 2009, 113, 1587; b) P. E. Hopkinson, P. A. Staniec, A. J. Pearson, A. D. F. Dunbar, T. Wang, A. J. Ryan, R. A. L. Jones, D. G. Lidzey, A. M. Donald, Macromolecules 2011, 44, 2908; c) H. Chen, J. Chen, W. Yin, X. Yu, M. Shao, K. Xiao, K. Hong, D. L. Pickel, W. M. Kochemba, S. M. Kilbey II, M. Dadmun, J. Mater. Chem. A 2013, 1, 5309.
dc.identifier.citedreferenceZ. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 2012, 6, 591.
dc.identifier.citedreferencea) J. Hou, Z. Tan, Y. Yan, Y. He, C. Yang, Y. Li, J. Am. Chem. Soc. 2006, 128, 4911; b) Y. He, G. Zhao, B. Peng, Y. Li, Adv. Funct. Mater. 2010, 20, 3383.
dc.identifier.citedreferenceNote that blends containing 12 wt% random copolymer exhibited lower electron mobilities than the 8 wt% blend, and lower hole mobilities than the control devices, suggesting there is an upper limit to additive concentration on its beneficial effects (Figures S56 and S57, Supporting Information). We suspect that at these higher concentrations the copolymer may disrupt the P3HT crystallization within its “pure” domain.
dc.identifier.citedreferenceM.‐S. Kim, B.‐G. Kim, J. Kim, ACS Appl. Mater. Interfaces 2009, 1, 1264.
dc.identifier.citedreferencea) J. D. Zimmerman, X. Xiao, C. K. Renshaw, S. Wang, V. V. Diev, M. E. Thompson, S. R. Forrest, Nano Lett. 2012, 12, 4366; b) W. J. Potscavage Jr., A. Sharma, B. Kippelen, Acc. Chem. Res. 2009, 42, 1758; c) C. G. Shuttle, A. Maurano, R. Hamilton, B. O’Regan, J. C. de Mello, J. R. Durrant, Appl. Phys. Lett. 2008, 93, 183501.
dc.identifier.citedreferenceN. E. Mbua, J. Guo, M. A. Wolfert, R. Steet, G.‐J. Boons, ChemBioChem 2011, 12, 1912.
dc.identifier.citedreferenceS. P. Singh, C. P. Kumar, G. D. Sharma, R. Kurchania, M. S. Roy, Adv. Funct. Mater. 2012, 22, 4087.
dc.identifier.citedreferenceS. Wang, X. Yang, W. Zhu, L. Zou, K. Zhang, Y. Chen, F. Xi, Polymer 2014, 55, 4812.
dc.identifier.citedreferenceNational Renewable Energy Lab, Best Research‐Cell Efficiencies, https://www.nrel.gov/pv/assets/images/efficiency‐chart.png (accessed: June 2018).
dc.identifier.citedreferenceFor recent reviews, see: a) G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447; b) J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119; c) S. Holliday, Y. Li, C. K. Luscombe, Prog. Polym. Sci. 2017, 70, 34; d) H. Huang, L. Yang, B. Sharma, J. Mater. Chem. A 2017, 5, 11501; e) Y. Gao, M. Liu, Y. Zhang, Z. Liu, Y. Yang, L. Zhao, Polymers 2017, 9, 39; f) Z. Hu, L. Ying, F. Huang, Y. Cao, Sci. China: Chem. 2017, 60, 571; g) S. Xiao, Q. Zhang, W. You, Adv. Mater. 2017, 29, 1601391; h) L. Ying, F. Huang, G. C. Bazan, Nat. Commun. 2017, 8, 14047.
dc.identifier.citedreferencea) F. C. Krebs, N. Espinosa, M. Hösel, R. R. Søndergaard, M. Jørgensen, Adv. Mater. 2014, 26, 29; b) R. R. Søndergaard, M. Hösel, F. C. Krebs, J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 16; c) R. Søndergaard, M. Hösel, D. Angmo, T. T. Larsen‐Olsen, F. C. Krebs, Mater. Today 2012, 15, 36.
dc.identifier.citedreferenceFor reviews and recent examples of fullerene‐free devices, see: a) S. Li, L. Ye, W. Zhao, H. Yan, B. Yang, D. Liu, W. Li, H. Ade, J. Hou, J. Am. Chem. Soc. 2018, 140, 7159; b) Z. Fei, F. D. Eisner, X. Jiao, M. Azzouzi, J. A. Röhr, Y. Han, M. Shahid, A. S. R. Chesman, C. D. Easton, C. R. McNeill, T. D. Anthopoulos, J. Nelson, M. Heeney, Adv. Mater. 2018, 30, 1705209; c) P. Cheng, G. Li, X. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131; d) X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, Q. Peng, Adv. Mater. 2018, 30, 1703973; e) W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148; f) W. Chen, Q. Zhang, J. Mater. Chem. C 2017, 5, 1275.
dc.identifier.citedreferenceFor reviews and examples of fullerene‐containing devices, see: a) J. Zhao, S. Zhao, Z. Xu, D. Song, B. Qiao, D. Huang, Y. Zhu, Y. Li, Z. Li, Z. Qin, ACS Appl. Mater. Interfaces 2018, 10, 24075; b) C. Xu, M. Wright, N. K. Elumalai, M. A. Mahmud, D. Wang, V. R. Goncales, M. B. Upama, F. Haque, J. J. Gooding, A. Uddin, Appl. Phys. A 2018, 124, 449; c) Y. Liu, M. Sheri, M. D. Cole, T. Emrick, T. P. Russell, Angew. Chem., Int. Ed. 2018, 57, 9675; d) J. Zhang, R. Xue, G. Xu, W. Chen, G.‐Q. Bian, C. Wei, Y. Li, Y. Li, Adv. Funct. Mater. 2018, 28, 1705847; e) X. Liu, L. Nian, K. Gao, L. Zhang, L. Qing, Z. Wang, L. Ying, Z. Xie, Y. Ma, Y. Cao, F. Liu, J. Chen, J. Mater. Chem. A 2017, 5, 17619; f) C. Li, H. Zhu, Y. Wang, H. Liu, S. Hu, F. Wang, B. Zhang, S. Dai, Z. Tan, Nano Energy 2017, 31, 201; g) J. Huang, J. H. Carpenter, C.‐Z. Li, J.‐S. Yu, H. Ade, A. K.‐Y. Jen, Adv. Mater. 2016, 28, 967; h) J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy 2016, 1, 15027.
dc.identifier.citedreferenceK. Bourzac, C&EN Global Enterp. 2018, 96, 7.
dc.identifier.citedreferenceFor reviews on stability (including, but not limited to, morphological stability), see: a) S. Rafique, S. M. Abdullah, K. Sulaiman, M. Iwamoto, Renewable Sustainable Energy Rev. 2018, 84, 43; b) S. A. Gevorgyan, I. M. Heckler, E. Bundgaard, M. Corazza, M. Hösel, R. R. Søndergaard, G. A. dos Reis Benatto, M. Jørgensen, F. C. Krebs, J. Phys. D: Appl. Phys. 2017, 50, 103001; c) W. R. Mateker, M. D. McGehee, Adv. Mater. 2017, 29, 1603940; d) P. Cheng, X. Zhan, Chem. Soc. Rev. 2016, 45, 2544; e) S. Lizin, S. Van Passel, E. De Schepper, W. Maes, L. Lutsen, J. Manca, D. Vanderzande, Energy Environ. Sci. 2013, 6, 3136; f) M. Jørgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen, F. C. Krebs, Adv. Mater. 2012, 24, 580.
dc.identifier.citedreferencea) B. Kuei, E. D. Gomez, Soft Matter 2017, 13, 49; b) F. S. Bates, Science 1991, 251, 898.
dc.identifier.citedreferenceFor recent reviews, see: a) P. Cheng, X. Zhan, Mater. Horiz. 2015, 2, 462; b) F. Goubard, G. Wantz, Polym. Int. 2014, 63, 1362.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.