Show simple item record

Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios

dc.contributor.authorMotta, Laura C.
dc.contributor.authorBlum, Joel D.
dc.contributor.authorJohnson, Marcus W.
dc.contributor.authorUmhau, Blaire P.
dc.contributor.authorPopp, Brian N.
dc.contributor.authorWashburn, Spencer J.
dc.contributor.authorDrazen, Jeffrey C.
dc.contributor.authorBenitez‐nelson, Claudia R.
dc.contributor.authorHannides, Cecelia C. S.
dc.contributor.authorClose, Hilary G.
dc.contributor.authorLamborg, Carl H.
dc.date.accessioned2019-08-09T17:13:55Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-08-09T17:13:55Z
dc.date.issued2019-06
dc.identifier.citationMotta, Laura C.; Blum, Joel D.; Johnson, Marcus W.; Umhau, Blaire P.; Popp, Brian N.; Washburn, Spencer J.; Drazen, Jeffrey C.; Benitez‐nelson, Claudia R. ; Hannides, Cecelia C. S.; Close, Hilary G.; Lamborg, Carl H. (2019). "Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios." Global Biogeochemical Cycles 33(6): 777-794.
dc.identifier.issn0886-6236
dc.identifier.issn1944-9224
dc.identifier.urihttps://hdl.handle.net/2027.42/150543
dc.description.abstractThe oceans are an important global reservoir for mercury (Hg), and marine fish consumption is the dominant human exposure pathway for its toxic methylated form. A more thorough understanding of the global biogeochemical cycle of Hg requires additional information on the mechanisms that control Hg cycling in pelagic marine waters. In this study, Hg isotope ratios and total Hg concentrations are used to explore Hg biogeochemistry in oligotrophic marine environments north of Hawaii. We present the first measurements of the vertical water column distribution of Hg concentrations and the Hg isotopic composition in precipitation, marine particles, and zooplankton near Station ALOHA (22°45â ²N, 158°W). Our results reveal production and demethylation of methylmercury in both the euphotic (0â 175 m) and mesopelagic zones (200â 1,000 m). We document a strong relationship between Hg isotopic composition and depth in particles, zooplankton, and fish in the water column and diurnal variations in Î 199Hg values in zooplankton sampled near the surface (25 m). Based on these observations and stable Hg isotope relationships in the marine food web, we suggest that the Hg found in large pelagic fish at Station ALOHA was originally deposited largely by precipitation, transformed into methylâ Hg, and bioaccumulated in situ in the water column. Our results highlight how Hg isotopic compositions reflect abiotic and biotic production and degradation of methylâ Hg throughout the water column and the importance of particles and zooplankton in the vertical transport of Hg.Key PointsMMHg bioaccumulated in fish is derived primarily from Hg (II) deposited in atmospheric precipitationMarine particles host the majority of Hg available for production of MMHg in the open oceanMethylation and demethylation of Hg occurs throughout the euphotic and mesopelagic zones in the North Pacific Subtropical Gyre
dc.publisherWiley Periodicals, Inc.
dc.subject.othermercury
dc.subject.otherdemethylation
dc.subject.othermethylation
dc.subject.othermercury bioaccumulation
dc.subject.othermercury at Station ALOHA
dc.subject.othermercury isotopes
dc.titleMercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150543/1/gbc20883.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150543/2/gbc20883_am.pdf
dc.identifier.doi10.1029/2018GB006057
dc.identifier.sourceGlobal Biogeochemical Cycles
dc.identifier.citedreferencePasulka, A. L., Landry, M. R., Taniguchi, D. A. A., Taylor, A. G., & Church, M. J. ( 2013 ). Temporal dynamics of phytoplankton and heterotrophic protists at Station ALOHA. Deepâ Sea Research Part II: Topical Studies in Oceanography, 93, 44 â 57. https://doi.org/10.1016/j.dsr2.2013.01.007
dc.identifier.citedreferenceMonperrus, M., Martinâ Doimeadios, R. C. R., Scancar, J., Amouroux, D., Donard, O. F. X., & Adour, D. ( 2003 ). Simultaneous sample preparation and speciesâ specific isotope dilution mass spectrometry analysis of monomethylmercury and tributyltin in a certified oyster tissue. Analytical Chemistry, 75 ( 16 ), 4095 â 4102. https://doi.org/10.1021/ac0263871
dc.identifier.citedreferenceMorel, F. M. M., Kraepiel, A. M. L., & Amyot, M. ( 1998 ). The chemical cycle and bioaccumulation. Annual Review of Ecology, Evolution, and Systematics, 29 ( 1 ), 543 â 566. https://doi.org/10.1146/annurev.ecolsys.29.1.543
dc.identifier.citedreferenceMunson, K. M., Babi, D., & Lamborg, C. H. ( 2014 ). Monomethylmercury determination from seawater using ascorbicâ acid assisted direct ethylation. Limnology and Oceanography: Methods, 12 ( 1 ), 1 â 9. https://doi.org/10.4319/lom.2014.12.1
dc.identifier.citedreferenceMunson, K. M., Lamborg, C. H., Boiteau, R. M., & Saito, M. A. ( 2018 ). Dynamic mercury methylation and demethylation in oligotrophic marine water. Biogeosciences Discussions, 15 ( 21 ), 6451 â 6460. https://doi.org/10.5194/bgâ 15â 6451â 2018
dc.identifier.citedreferenceMunson, K. M., Lamborg, C. H., Swarr, G. J., & Saito, M. A. ( 2015 ). Mercury species concentrations and fluxes in the central tropical Pacific Ocean. Global Biogeochemical Cycles, 29, 656 â 676. https://doi.org/10.1002/2015GB005120
dc.identifier.citedreferenceNoble, A. E., Lamborg, C. H., Ohnemus, D. C., Lam, P. P., Goepfert, T. J., Measures, C. I., Frame, C. H., Casciotti, K. L., Ditullio, G. R., Jennings, J. C., & Saito, M. A. ( 2012 ). Basinâ scale plumes of cobalt, iron, and manganese emanating from the Benguelaâ Angola front in the South Atlantic Ocean. Limnology and Oceanography, 57 ( 4 ), 989 â 1010. https://doi.org/10.4319/lo.2012.57.4.0989
dc.identifier.citedreferenceRodriguezâ Gonzalez, P., Epov, V. N., Bridou, R., Tessier, E., Guyoneaud, R., Monperrus, M., & Amouroux, D. ( 2009 ). Species specific stable isotope fractionation of mercury during Hg (II) methylation by an anaerobic bacteria ( Desulfobulbus propionicus ) under dark conditions. Environmental Science & Technology, 43 ( 24 ), 9183 â 9188. https://doi.org/10.1021/es902206j
dc.identifier.citedreferenceSackett, D. K., Drazen, J. C., Popp, B. N., Choy, C. A., Blum, J. D., & Johnson, M. W. ( 2017 ). Carbon, nitrogen, and mercury isotope evidence for the biogeochemical history of mercury in Hawaiian marine bottomfish. Environmental Science & Technology, 51 ( 23 ), 13,976 â 13,984. https://doi.org/10.1021/acs.est.7b04893
dc.identifier.citedreferenceSenn, D. B., Chesney, E. J., Blum, J. D., Bank M.S., Maage, A., & Shine, J. P. ( 2010 ). Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern Gulf of Mexico. Environmental Science and Technology, 44 ( 5 ), 1630 â 1637. https://doi.org/10.1021/es902361j
dc.identifier.citedreferenceSprovieri, F., Hedgecock, I. M., & Pirrone, N. ( 2010 ). An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer. Atmospheric Chemistry and Physics, 10 ( 8 ), 3985 â 3997. https://doi.org/10.5194/acpâ 10â 3985â 2010
dc.identifier.citedreferenceSteinberg, D. K., & Landry, M. R. ( 2017 ). Zooplankton and the ocean carbon cycle. Annual Review of Marine Science, 9 ( 1 ), 413 â 444. https://doi.org/10.1146/annurevâ marineâ 010814â 015924
dc.identifier.citedreferenceSteinberg, D. K., van Mooy, B. A. S., Buesseler, K. O., Boyd, P. W., Kobari, T., & Karl, D. M. ( 2008 ). Microbial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnology and Oceanography, 53 ( 4 ), 1327 â 1338. https://doi.org/10.4319/lo.2008.53.4.1327
dc.identifier.citedreferenceStrode, S., Jaegle, L., Selin, N., Jacob, D., Park, R., Yantosca, R., Mason, R., & Slemr, F. ( 2007 ). Airâ sea exchange in the global mercury cycle. Global Biogeochemical Cycles, 21, GB1017. https://doi.org/10.1029/2006GB002766
dc.identifier.citedreferenceÅ trok, M., Baya, P. A., & Hintelmann, H. ( 2015 ). The mercury isotope composition of Artic coastal seawater. Comptes Rendus Geoscience, 347 ( 7â 8 ), 368 â 376. https://doi.org/10.1016/j.crte.2015.04.001
dc.identifier.citedreferenceSuda, I., Suda, M., & Hirayama, K. ( 1993 ). Degradation of methyl and ethyl mercury by singlet oxygen generated from sea water exposed to sunlight or ultraviolet light. Archives of Toxicology, 67 ( 5 ), 365 â 368. https://doi.org/10.1007/BF01973709
dc.identifier.citedreferenceSunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., & Landing, W. M. ( 2009 ). Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochemical Cycles, 23, GB2010. https://doi.org/10.1029/2008GB003425
dc.identifier.citedreferenceSunderland, E. M., & Mason, R. P. ( 2007 ). Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles, 21, GB4022. https://doi.org/10.1029/2006GB002876
dc.identifier.citedreferenceUmhau, B., Motta, L. C., Benitezâ Nelson, C. R., Close, H. G., Hannides, C. C. S., Popp, B. N., Blum, J. D., Drazen, J. C., & Grabb, K. C. ( 2016 ). Characterization of mercury particle flux using 238U:234Th disequilibria in the North Pacific Subtropical Gyre. 2016 Ocean Sciences Meeting (New Orleans, LA).
dc.identifier.citedreferenceWashburn, S. J., Blum, J. D., Demers, J. D., Kurz, A. Y., & Landis, R. C. ( 2017 ). Isotopic characterization of mercury downstream of historic industrial contamination in the South River, Virginia. Environmental Science and Technology, 51 ( 19 ), 10,965 â 10,973. https://doi.org/10.1021/acs.est.7b02577
dc.identifier.citedreferenceWatras, C., & Bloom, N. ( 1992 ). Mercury and methylmercury in individual implications for bioaccumulation zooplankton. Limnology and Oceanography, 37 ( 6 ), 1313 â 1318. https://doi.org/10.4319/lo.1992.37.6.1313
dc.identifier.citedreferenceWiebe, P. H., Morton, A. W., Bradley, A. M., Backus, R. H., Craddock, J. E., Barber, V., Cowle, T. J., & Flierl, G. R. ( 1985 ). New developments in the MOCNESS, an apparatus for sampling zooplankton and micronekton. Marine Biology, 87 ( 3 ), 313 â 323. https://doi.org/10.1007/BF00397811
dc.identifier.citedreferenceWiederhold, J. G., Cramer, C. J., Daniel, K., Infante, I., Bourdon, B., & Kretzschmar, R. ( 2010 ). Equilibrium mercury isotope fractionation between dissolved Hg (II) species and thiolâ bound Hg. Environmental Science & Technology, 44 ( 11 ), 4191 â 4197. https://doi.org/10.1021/es100205t
dc.identifier.citedreferenceYork, D. ( 1969 ). Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters, 5, 320 â 324.
dc.identifier.citedreferenceZaferani, S., Pérezâ Rodríguez, M., & Biester, H. ( 2018 ). Diatom oozeâ A large marine mercury sink. Science, 361 ( 6404 ), 797 â 800. https://doi.org/10.1126/science.aat2735
dc.identifier.citedreferenceZhang, T., & Hsuâ Kim, H. ( 2010 ). Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nature Geoscience, 3 ( 7 ), 473 â 476. https://doi.org/10.1038/ngeo892
dc.identifier.citedreferenceZheng, W., & Hintelmann, H. ( 2010 ). Isotope fractionation of mercury during Its photochemical reduction by lowâ molecularâ weight organic compounds. The Journal of Physical Chemistry. A, 114 ( 12 ), 4246 â 4253. https://doi.org/10.1021/jp9111348
dc.identifier.citedreferenceHeimbürger, L.â E., Cossa, D., Marty, J.â C., Migon, C., Averty, B., Dufour, A., & Ras, J. ( 2010 ). Methyl mercury distributions in relation to the presence of nano and picophytoplankton in an oceanic water column (Ligurian Sea, Northâ western Mediterranean). Geochimica et Cosmochimica Acta, 74 ( 19 ), 5549 â 5559. https://doi.org/10.1016/j.gca.2010.06.036
dc.identifier.citedreferenceMcGowan, J. A., & Walker, P. W. ( 1979 ). Structure in the copepod community of the North Pacific central gyre. Ecological Monographs, 49 ( 2 ), 195 â 226. https://doi.org/10.2307/1942513
dc.identifier.citedreferenceMonperrus, M., Tessier, E., Amouroux, D., Leynaert, A., Huonnic, P., & Donard, O. F. X. ( 2007 ). Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Marine Chemistry, 107 ( 1 ), 49 â 63. https://doi.org/10.1016/j.marchem.2007.01.018
dc.identifier.citedreferenceTalley, L. ( 1993 ). Distribution and formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23 ( 3 ), 517 â 537. https://doi.org/10.1175/1520â 0485(1993)023<0517:DAFONP>2.0.CO;2
dc.identifier.citedreferenceUeno, H., & Yasuda, I. ( 2003 ). Intermediate water circulation in the North Pacific subarctic and northern subtropical regions. Journal of Geophysical Research, 08 ( C11 ), 3348. https://doi.org/10.1029/2002JC001372
dc.identifier.citedreferenceAndersson, M., Sommar, J., GÃ¥rdfeldt, K., & Jutterström, S. ( 2011 ). Airâ sea exchange of volatile mercury in the North Atlantic Ocean. Marine Chemistry, 125 ( 1â 4 ), 1 â 7. https://doi.org/10.1016/j.marchem.2011.01.005
dc.identifier.citedreferenceBenitezâ Nelson, C. R., Buesseler, K. O., Karl, D. M., & Andrews, J. E. ( 2001 ). A timeâ series study of particulate matter export in the North Pacific Subtropical Gyre based on 234 Th: 238 U disequilibrium. Deepâ Sea Research Part I: Oceanographic Research Papers, 48 ( 12 ), 2595 â 2611. https://doi.org/10.1016/S0967â 0637(01)00032â 2
dc.identifier.citedreferenceBergquist, B., & Blum, J. D. ( 2007 ). Massâ dependent and independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science, 318 ( 5849 ), 417 â 420. https://doi.org/10.1126/science.1148050
dc.identifier.citedreferenceBishop, J. K. B., Lam, P. J., & Wood, T. J. ( 2012 ). Getting good particles: Accurate sampling of particles by large volume inâ situ filtration. Limnology and Oceanography: Methods, 10 ( 9 ), 681 â 710. https://doi.org/10.4319/lom.2012.10.681
dc.identifier.citedreferenceBiswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J., & Xie, Z. ( 2008 ). Natural mercury isotope variation in coal deposits and organic soils. Environmental Science and Technology, 42 ( 22 ), 8303 â 8309. https://doi.org/10.1021/es801444b
dc.identifier.citedreferenceBlack, F. J., Poulin, B. A., & Flegal, A. R. ( 2012 ). Factors controlling the abiotic photoâ degradation of monomethylmercury in surface waters. Geochimica et Cosmochimica Acta, 84, 492 â 507. https://doi.org/10.1016/j.gca.2012.01.019
dc.identifier.citedreferenceBlum, J. D., & Bergquist, B. A. ( 2007 ). Reporting of variations in the natural isotopic composition of mercury. Analytical and Bioanalytical Chemistry, 388 ( 2 ), 353 â 359. https://doi.org/10.1007/s00216â 007â 1236â 9
dc.identifier.citedreferenceBlum, J. D., & Johnson, M. W. ( 2017 ). Recent developments in mercury stable isotope analysis. Nonâ traditional isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82 ( 1 ), 733 â 757. https://doi.org/10.2138/rmg.2017.82.17
dc.identifier.citedreferenceBlum, J. D., Popp, B. N., Drazen, J. C., Choy, C. A., & Johnson, M. W. ( 2013 ). Methylmercury production below the mixed layer in the North Pacific Ocean. Nature Geoscience, 6 ( 10 ), 879 â 884. https://doi.org/10.1038/ngeo1918
dc.identifier.citedreferenceBlum, J. D., Sherman, L. S., & Johnson, M. W. ( 2014 ). Mercury isotopes in Earth and environmental science. Annual Review of Earth and Planetary Sciences, 42 ( 1 ), 249 â 269. https://doi.org/10.1146/annurevâ earthâ 050212â 124107
dc.identifier.citedreferenceBöttjer, D., Dore, J. E., Karl, D. M., Letelier, R. M., Mahaffey, C., Wilson, S. T., Zehr, J., & Church, M. J. ( 2017 ). Temporal variability of nitrogen fixation and particulate nitrogen export at Station ALOHA. Limnology and Oceanography, 62 ( 1 ), 200 â 216. https://doi.org/10.1002/lno.10386
dc.identifier.citedreferenceChandan, P., Ghosh, S., & Bergquist, B. A. ( 2015 ). Mercury isotope fractionation during aqueous photoreduction of monomethylmercury in the presence of dissolved organic matter. Environmental Science and Technology, 49 ( 1 ), 259 â 267. https://doi.org/10.1021/es5034553
dc.identifier.citedreferenceChen, J., Hintelmann, H., Feng, X., & Dimock, B. ( 2012 ). Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochimica et Cosmochimica Acta, 90, 33 â 46. https://doi.org/10.1016/j.gca.2012.05.005
dc.identifier.citedreferenceChoy, C. A., Popp, B. N., Hannides, C. C. S., & Drazen, J. C. ( 2015 ). Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnology and Oceanography, 60 ( 4 ), 1156 â 1171. https://doi.org/10.1002/lno.10085
dc.identifier.citedreferenceChoy, C. A., Popp, B. N., Kaneko, J. J., & Drazen, J. C. ( 2009 ). The influence of depth on mercury levels in pelagic fishes and their prey. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 33 ), 13,865 â 13,869. https://doi.org/10.1073/pnas.0900711106
dc.identifier.citedreferenceChurch, M. J., Lomas, M. W., & Mullerâ karger, F. ( 2013 ). Deepâ sea research II sea change: Charting the course for biogeochemical ocean timeâ series research in a new millennium. Deepâ Sea Research Part II: Topical Studies in Oceanography, 93, 2 â 15. https://doi.org/10.1016/j.dsr2.2013.01.035
dc.identifier.citedreferenceClose, H. G., Hannides, C. S., Drazen, J. C., & Popp, B. N. ( 2015 ). Degradative transformations of stable isotope ratios in sinking and suspended organic matter, from surface to upper bathypelagic depths, Station ALOHA. 2015 Aquatic Sciences Meeting (Granada, Spain).
dc.identifier.citedreferenceClose, H. G., Hannides, C. S., & Popp, B. N. ( 2014 ). Compoundâ specific values as indicator of biosynthesis and degradation in marine particles, from submicron to sinking at Station ALOHA. 2014 Ocean Sciences Meeting (Honolulu, HI).
dc.identifier.citedreferenceCossa, D., Averty, B., & Pirrone, N. ( 2009 ). The origin of methylmercury in open Mediterranean waters. Limnology and Oceanography, 54 ( 3 ), 837 â 844. https://doi.org/10.4319/lo.2009.54.3.0837
dc.identifier.citedreferenceCossa, D., Heimbürger, L. E., Lannuzel, D., Rintoul, S. R., Bultler, E. C. V., Bowie, A. R., Averty, B., Watson, R. J., & Remenyi, T. ( 2011 ). Mercury in the Southern Ocean. Geochimca et Cosmochimca Acta, 75 ( 14 ), 4037 â 4052. https://doi.org/10.1016/j.gca.2011.05.001
dc.identifier.citedreferenceCossa, D., Heimbürger, L. E., Sonke, J. E., Planquette, H., Lherminier, P., Garcíaâ Ibáñez, M. I., Pérez, F. F., & Sarthou, G. ( 2018 ). Sources, cycling and transfer of mercury in the Labrador Sea (Geotracesâ Geovide cruise). Marine Chemistry, 198, 64 â 69. https://doi.org/10.1016/j.marchem.2017.11.006
dc.identifier.citedreferenceCossa, D., Martin, J.â M., Takayanagi, K., & Sanjuan, J. ( 1997 ). The distribution and cycling of mercury species in the western Mediterranean. Deepâ Sea Research Part II: Topical Studies in Oceanography, 44 ( 3â 4 ), 721 â 740. https://doi.org/10.1016/S0967â 0645(96)00097â 5
dc.identifier.citedreferenceDemers, J. D., Blum, J. D., & Zak, D. R. ( 2013 ). Mercury isotopes in a forested ecosystem: Implications for airâ surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 27, 222 â 238. https://doi.org/10.1002/gbc.20021
dc.identifier.citedreferenceFisher, J. A., Jacob, D. J., Soerensen, A. L., Amos, H. M., Steffen, A., & Sunderland, E. M. ( 2012 ). Riverine source of Artic Ocean mercury inferred from atmospheric observations. Nature Geoscience, 5 ( 7 ), 499 â 504. https://doi.org/10.1038/ngeo1478
dc.identifier.citedreferenceFitzgerald, W. F., Lamborg, C. H., & Hammerschmidt, C. R. ( 2007 ). Marine biogeochemical cycling of mercury. Chemical Reviews, 107 ( 2 ), 641 â 662. https://doi.org/10.1021/cr050353m
dc.identifier.citedreferenceGehrke, G. E., Blum, J. D., & Marvinâ DePasquale, M. ( 2011 ). Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes. Geochimica et Cosmochimca Acta, 75 ( 3 ), 691 â 705. https://doi.org/10.1016/j.gca.2010.11.012
dc.identifier.citedreferenceGloeckler, K., Choy, C. A., Hannides, C. C., Close, H. G., Goetze, E., Popp, B. N., & Drazen, J. C. ( 2018 ). Stable isotope analysis of micronekton around Hawaii reveals suspended particles are an important nutritional source in the lower mesopelagic and upper bathypelagic zones. Limnology and Oceanography, 63 ( 3 ), 1168 â 1180. https://doi.org/10.1002/lno.10762
dc.identifier.citedreferenceGorski, P. R., Armstrong, D. E., Hurley, J. P., & Shafer, M. M. ( 2006 ). Speciation of aqueous methylmercury influences uptake by freshwater alga (Selenastrum capricornutum). Environmental Toxicology and Chemistry, 25 ( 2 ), 534 â 540. https://doi.org/10.1897/04â 530R.1
dc.identifier.citedreferenceGosnell, K. J., & Mason, R. P. ( 2015 ). Mercury and methylmercury incidence and bioaccumulation in plankton from the central Pacific Ocean. Marine Chemistry, 177, 772 â 780. https://doi.org/10.1016/j.marchem.2015.07.005
dc.identifier.citedreferenceGratz, L. E., Keeler, G. J., Blum, J. D., & Sherman, L. S. ( 2010 ). Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environmental Science and Technology, 44 ( 20 ), 7764 â 7770. https://doi.org/10.1021/es100383w
dc.identifier.citedreferenceGrégoire, D. S., & Poulain, A. J. ( 2016 ). A physiological role for HgII during phototrophic growth. Nature Geoscience, 9 ( 2 ), 121 â 125. https://doi.org/10.1038/ngeo2629
dc.identifier.citedreferenceHammerschmidt, C. R., & Bowman, K. L. ( 2012 ). Vertical methylmercury distributions in the subtropical North Pacific Ocean. Marine Chemistry, 132â 133, 77 â 82.
dc.identifier.citedreferenceHammerschmidt, C. R., Finiguerra, M. B., Weller, R. L., & Fitzgerald, W. F. ( 2013 ). Methylmercury accumulation in plankton on the continental margin of the northwest Atlantic Ocean. Environmental Science and Technology, 47 ( 8 ), 3671 â 3677. https://doi.org/10.1021/es3048619
dc.identifier.citedreferenceHammerschmidt, C. R., & Fitzgerald, W. F. ( 2006 ). Methylmercury cycling in sediments on the continental shelf of southern New England. Geochimica et Cosmochimca Acta, 70 ( 4 ), 918 â 930. https://doi.org/10.1016/j.gca.2005.10.020
dc.identifier.citedreferenceHannides, C. C., Popp, B. N., Close, H. G., Benitezâ Nelson, C. R., Ka’apuâ Lyons, C. A., Gloecker, K., Wallsgrove, N., Umahu, B., & Drazen, J. ( 2016 ). Midwater zooplankton response to seasonality in export flux in the North Pacific Subtropical Gyre. 2016 Ocean Sciences Meeting (New Orleans, LA).
dc.identifier.citedreferenceHedgecock, I. M., & Pirrone, N. ( 2001 ). Mercury and photochemistry in the marine boundary layerâ modelling studies suggest the in situ production of reactive gas phase mercury. Atmospheric Environment, 35 ( 17 ), 3055 â 3062. https://doi.org/10.1016/s1352â 2310(01)00109â 1
dc.identifier.citedreferenceInoko, M. ( 1981 ). Studies on the photochemical decomposition of organomercurialsâ methylmercury (II) chloride. Environmental Pollution, B2, 3 â 10.
dc.identifier.citedreferenceJanssen, S. E., Schaefer, J. K., Barkay, T., & Reinfelder, J. R. ( 2016 ). Fractionation of mercury stable isotopes during microbial methylmercury production by ironâ and sulfateâ reducing bacteria. Environmental Science and Technology, 50, 8077 â 8083. https://doi.org/10.1021/acs.est.6b00854
dc.identifier.citedreferenceJiskra, M., Wiederhold, J. G., Bourdon, B., & Kretzschmar, R. ( 2012 ). Solution speciation controls mercury isotope fractionation of Hg (II) sorption to goethite. Environmental Science and Technology, 46 ( 12 ), 6654 â 6662. https://doi.org/10.1021/es3008112
dc.identifier.citedreferenceKarl, D. M., Church, M. J., Dore, J. E., Letelier, R. M., & Mahaffey, C. ( 2012 ). Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 6 ), 1842 â 1849. https://doi.org/10.1073/pnas.1120312109
dc.identifier.citedreferenceKritee, K., Barkay, T., & Blum, J. D. ( 2009 ). Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochimica et Cosmochimica Acta, 73 ( 5 ), 1285 â 1296. https://doi.org/10.1016/j.gca.2008.11.038
dc.identifier.citedreferenceKritee, K., Motta, L. C., Blum, J. D., Tsui, M. T., & Reinfelder, J. R. ( 2017 ). Photomicrobial visible lightâ induced magnetic mass independent fractionation of mercury in marine microalga. Earth and Space Chemistry, 2, 432 â 440.
dc.identifier.citedreferenceKwon, S. Y., Blum, J. D., Chen, C. Y., Meattey, D. E., & Mason, R. P. ( 2015 ). Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the Northeastern US. Environmental Science and Technology, 48, 10,089 â 10,097.
dc.identifier.citedreferenceLamborg, C. H., Hammerschmidt, C. R., & Bowman, K. L. ( 2016 ). An examination of the role of particles in oceanic mercury cycling. Philosophical Transactions of the Royal Society A, 374 ( 2081 ), 20150297. https://doi.org/10.1098/rsta.2015.0297
dc.identifier.citedreferenceLamborg, C. H., Hammerschmidt, C. R., R, C., Gill, G. A., Mason, R. P., & Gichuki, S. ( 2012 ). An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises. Limnology and Oceanography: Methods, 10 ( 2 ), 90 â 100. https://doi.org/10.4319/lom.2012.10.90
dc.identifier.citedreferenceLamborg, C. H., von Damm, K. L., Fitzgerald, W. F., Hammerschmidt, C. R., & Zierenberg, R. ( 2006 ). Mercury and monomethylmercury in fluids from Sea Cliff submarine. Geophysical Research Letters, 33, L17606. https://doi.org/10.1029/2006GL026321
dc.identifier.citedreferenceLamborg, C. H., Tseng, C.â M., Fitzgerald, W. F., Balcom, P. H., & Hammerschmidt, C. R. ( 2003 ). Determination of the Mercury Complexation Characteristics of Dissolved Organic Matter in Natural Waters with « Reducible Hg » Titrations. Environmental Science & Technology, 37 ( 15 ), 3316 â 3322. https://doi.org/10.1021/es0264394
dc.identifier.citedreferenceLandis, M. S., & Keeler, G. J. ( 1997 ). Critical evaluation of a modified automatic wetâ only precipitation collector for mercury and trace element determinations. Environmental Science and Technology, 31 ( 9 ), 2610 â 2615. https://doi.org/10.1021/es9700055
dc.identifier.citedreferenceLauretta, D. S., Klaue, B., Blum, J. D., & Buseck, P. R. ( 2001 ). Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites. Geochimica et Cosmochimca Acta, 65 ( 16 ), 2807 â 2818. https://doi.org/10.1016/S0016â 7037(01)00630â 5
dc.identifier.citedreferenceLaurier, F. J. G., Mason, R. P., Gill, G. A., & Whalin, L. ( 2004 ). Mercury distributions in the North Pacific Oceanâ 20 years of observations. Marine Chemistry, 90 ( 1â 4 ), 3 â 19. https://doi.org/10.1016/j.marchem.2004.02.025
dc.identifier.citedreferenceLee, C. S., & Fisher, N. S. ( 2016 ). Methylmercury uptake by diverse marine phytoplankton. Limnology and Oceanography, 61 ( 5 ), 1626 â 1639. https://doi.org/10.1002/lno.10318
dc.identifier.citedreferenceLee, C. S., & Fisher, N. S. ( 2017 ). Bioaccumulation of methylmercury in a marine copepod. Environmental Toxicology and Chemistry, 36 ( 5 ), 1287 â 1293. https://doi.org/10.1002/etc.3660
dc.identifier.citedreferenceLee, C. S., & Fisher, N. S. ( 2018 ). Microbial generation of elemental mercury form dissolved methylmercury in seawater. Limnology and Oceanography, 00, 1 â 15.
dc.identifier.citedreferenceLehnherr, I., & St. Louis, V. L. ( 2009 ). Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems. Environmental Science and Technology, 43 ( 15 ), 5692 â 5698. https://doi.org/10.1021/es9002923
dc.identifier.citedreferenceLi, M., Schartup, A. T., Valberg, A. P., Ewald, J. D., Krabbenhoft, D. P., Yin, R., Balcom, P. H., & Sunderland, E. M. ( 2016 ). Environmental origins of methylmercury accumulated in subarctic estuarine fish indicated by mercury stable isotopes. Environmental Science and Technology, 50 ( 21 ), 11,559 â 11,568. https://doi.org/10.1021/acs.est.6b03206
dc.identifier.citedreferenceMason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., & Sunderland, E. M. ( 2012 ). Mercury biogeochemical cycling in the ocean and policy implications. Environmental Research, 119, 101 â 117. https://doi.org/10.1016/j.envres.2012.03.013
dc.identifier.citedreferenceMason, R. P., Reinfelder, J. R., & Morel, F. M. M. ( 1995 ). Bioaccumulation of mercury and methylmercury. Water, Air, and Soil Pollution, 80 ( 1â 4 ), 915 â 921. https://doi.org/10.1007/BF01189744
dc.identifier.citedreferenceMason, R. P., Reinfelder, J. R., & Morel, F. M. M. ( 1996 ). uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science and Technology, 30 ( 6 ), 1835 â 1845. https://doi.org/10.1021/es950373d
dc.identifier.citedreferenceMason, R. P., & Sheu, G. ( 2002 ). Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16 ( 4 ), 1093. https://doi.org/10.1029/2001GB001440
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.