Show simple item record

MMS Study of the Structure of Ionâ Scale Flux Ropes in the Earth’s Crossâ Tail Current Sheet

dc.contributor.authorSun, W. J.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorTian, A. M.
dc.contributor.authorBai, S. C.
dc.contributor.authorPoh, G. K.
dc.contributor.authorAkhavan‐tafti, M.
dc.contributor.authorLu, San
dc.contributor.authorYao, S. T.
dc.contributor.authorLe, G.
dc.contributor.authorNakamura, R.
dc.contributor.authorGiles, B. L.
dc.contributor.authorBurch, J. L.
dc.date.accessioned2019-08-09T17:13:57Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-08-09T17:13:57Z
dc.date.issued2019-06-28
dc.identifier.citationSun, W. J.; Slavin, J. A.; Tian, A. M.; Bai, S. C.; Poh, G. K.; Akhavan‐tafti, M. ; Lu, San; Yao, S. T.; Le, G.; Nakamura, R.; Giles, B. L.; Burch, J. L. (2019). "MMS Study of the Structure of Ionâ Scale Flux Ropes in the Earth’s Crossâ Tail Current Sheet." Geophysical Research Letters 46(12): 6168-6177.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/150544
dc.description.abstractThis study analyzes 25 ionâ scale flux ropes in the Magnetospheric Multiscale (MMS) observations to determine their structures. The high temporal and spatial resolution MMS measurements enable the application of multispacecraft techniques to ionâ scale flux ropes. Flux ropes are identified as quasiâ oneâ dimensional (quasiâ 1â D) when they retain the features of reconnecting current sheets; that is, the magnetic field gradient is predominantly northward or southward, and quasiâ 2â D when they exhibit circular cross sections; that is, the magnetic field gradients in the plane transverse to the flux rope axis are comparable. The analysis shows that the quasiâ 2â D events have larger core fields and smaller pressure variations than the quasiâ 1â D events. These two types of flux ropes could be the result of different processes, including magnetic reconnection with different dawnâ dusk magnetic field components, temporal transformation of flattened structure to circular, or interactions with external environments.Plain Language SummaryMagnetic flux ropes are fundamental magnetic structures in space plasma physics and are commonly seen in the universe, such as, astrophysical jets, coronal mass ejections, and planetary magnetospheres. Flux ropes are important in mass and energy transport across plasma and magnetic boundaries, and they are found in a wide range of spatial sizes, from several tens of kilometers, that is, ionâ scale flux ropes, to tens of millions of kilometers, that is, coronal mass ejections, in the solar system. The ionâ scale flux ropes can be formed during magnetic reconnection and are hypothesized to energize electrons and influence the reconnection rate. Previous examinations of the structure of ionâ scale flux ropes were greatly limited by measurement resolution. The unprecedented Magnetospheric Multiscale (MMS) mission high temporal and spatial resolution measurements provide a unique opportunity to investigate flux rope structures. By employing multispacecraft techniques, this study has provided new insights into the magnetic field variations and dimensionality of ionâ scale flux ropes in the Earth’s magnetotail. The results are consistent with the evolution of ionâ scale flux ropes from initially flattened current sheetâ like flux ropes near the time of formation into lower energy state with circular cross section predicted by theory and termed as the â Taylorâ state.Key PointsIonâ scale flux ropes are observed to have either flattened or circular cross sections using MDD and GS reconstructionAnalysis of 25 flux ropes show that circular crossâ section flux ropes have stronger core field and smaller thermal pressures than flattened flux ropesThe two types of flux ropes may be the results of reconnection, temporal evolution, or interactions with external environment
dc.publisherWiley Periodicals, Inc.
dc.publisherESA Publication
dc.subject.othermagnetic structure
dc.subject.otherplasma depletion
dc.subject.otherevolution
dc.subject.otherionâ scale FRs
dc.titleMMS Study of the Structure of Ionâ Scale Flux Ropes in the Earth’s Crossâ Tail Current Sheet
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150544/1/grl59049.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150544/2/grl59049_am.pdf
dc.identifier.doi10.1029/2019GL083301
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSonnerup, B. U. Ã ., & Guo, M. ( 1996 ). Magnetopause transects. Geophysical Research Letters, 23 ( 25 ), 3679 â 3682. https://doi.org/10.1029/96GL03573
dc.identifier.citedreferenceMa, Z. W., Otto, A., & Lee, L. C. ( 1994 ). Core magnetic field enhancement in single X line, multiple X line and patchy reconnection. Journal of Geophysical Research, 99 ( A4 ), 6125 â 6136. https://doi.org/10.1029/93JA03480
dc.identifier.citedreferenceMarkidis, S., Henri, P., Lapenta, G., Divin, A., Goldman, M., Newman, D., & Laure, E. ( 2013 ). Kinetic simulations of plasmoid chain dynamics. Physics of Plasmas, 20 ( 8 ), 082105. https://doi.org/10.1063/1.4817286
dc.identifier.citedreferenceNakamura, T. K. M., Nakamura, R., Narita, Y., Baumjohann, W., & Daughton, W. ( 2016 ). Multiâ scale structures of turbulent magnetic reconnection. Physics of Plasmas, 23 ( 5 ), 052116. https://doi.org/10.1063/1.4951025
dc.identifier.citedreferencePollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto, T., Avanov, L., Barrie, A., Coffey, V., Dorelli, J., Gershman, D., Giles, B., Rosnack, T., Salo, C., Yokota, S., Adrian, M., Aoustin, C., Auletti, C., Aung, S., Bigio, V., Cao, N., Chandler, M., Chornay, D., Christian, K., Clark, G., Collinson, G., Corris, T., de Los Santos, A., Devlin, R., Diaz, T., Dickerson, T., Dickson, C., Diekmann, A., Diggs, F., Duncan, C., Figueroaâ Vinas, A., Firman, C., Freeman, M., Galassi, N., Garcia, K., Goodhart, G., Guererro, D., Hageman, J., Hanley, J., Hemminger, E., Holland, M., Hutchins, M., James, T., Jones, W., Kreisler, S., Kujawski, J., Lavu, V., Lobell, J., LeCompte, E., Lukemire, A., MacDonald, E., Mariano, A., Mukai, T., Narayanan, K., Nguyan, Q., Onizuka, M., Paterson, W., Persyn, S., Piepgrass, B., Cheney, F., Rager, A., Raghuram, T., Ramil, A., Reichenthal, L., Rodriguez, H., Rouzaud, J., Rucker, A., Saito, Y., Samara, M., Sauvaud, J. A., Schuster, D., Shappirio, M., Shelton, K., Sher, D., Smith, D., Smith, K., Smith, S., Steinfeld, D., Szymkiewicz, R., Tanimoto, K., Taylor, J., Tucker, C., Tull, K., Uhl, A., Vloet, J., Walpole, P., Weidner, S., White, D., Winkert, G., Yeh, P. S., & Zeuch, M. ( 2016 ). Fast Plasma Investigation for Magnetospheric Multiscale. Space Science Reviews, 199 ( 1â 4 ), 331 â 406. https://doi.org/10.1007/s11214â 016â 0245â 4
dc.identifier.citedreferenceRobert, P., Dunlop, M. W., Roux, A., & Chanteur, G. ( 1998 ). Accuracy of current density determination. In G. Paschmann & P. W. Daly (Eds.), Analysis methods for multiâ spacecraft data (pp. 395 â 418 ). Noordwijk, Netherlands: ESA Publication.
dc.identifier.citedreferenceRussell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., le, G., Leinweber, H. K., Leneman, D., Magnes, W., Means, J. D., Moldwin, M. B., Nakamura, R., Pierce, D., Plaschke, F., Rowe, K. M., Slavin, J. A., Strangeway, R. J., Torbert, R., Hagen, C., Jernej, I., Valavanoglou, A., & Richter, I. ( 2016 ). The Magnetospheric Multiscale magnetometers. Space Science Reviews, 199 ( 1â 4 ), 189 â 256. https://doi.org/10.1007/s11214â 014â 0057â 3
dc.identifier.citedreferenceSchindler, K. ( 1974 ). A theory of the substorm mechanism. Journal of Geophysical Research, 79 ( 19 ), 2803 â 2810. https://doi.org/10.1029/JA079i019p02803
dc.identifier.citedreferenceShen, C., Li, X., Dunlop, M., Shi, Q. Q., Liu, Z. X., Lucek, E., & Chen, Z. Q. ( 2007 ). Magnetic field rotation analysis and the applications. Journal of Geophysical Research, 112, A06211. https://doi.org/10.1029/2005JA011584
dc.identifier.citedreferenceShi, Q. Q., Pu, Z. Y., Soucek, J., Zong, Q. G., Fu, S. Y., Xie, L., Chen, Y., Zhang, H., Li, L., Xia, L. D., Liu, Z. X., Lucek, E., Fazakerley, A. N., & Reme, H. ( 2009 ). Spatial structures of magnetic depression in the Earth’s highâ altitude cusp: Cluster multipoint observations. Journal of Geophysical Research, 114, A10202. https://doi.org/10.1029/2009JA014283
dc.identifier.citedreferenceShi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong, Q. G., Liu, Z. X., Lucek, E., & Balogh, A. ( 2006 ). Motion of observed structures calculated from multiâ point magnetic field measurements: Application to Cluster. Geophysical Research Letters, 33, L08109. https://doi.org/10.1029/2005GL025073
dc.identifier.citedreferenceShi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q. G., Zhang, H., Xiao, C. J., Liu, Z. X., & Balogh, A. ( 2005 ). Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster. Geophysical Research Letters, 32, L12105. https://doi.org/10.1029/2005GL022454
dc.identifier.citedreferenceShi, Q. Q., Zong, Q. G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Wang, Y. F., Chen, Y., Li, L., Xia, L. D., Liu, Z. X., Fazakerley, A. N., Reme, H., & Lucek, E. ( 2009 ). Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. Journal of Geophysical Research, 114, A12219. https://doi.org/10.1029/2009JA014475
dc.identifier.citedreferenceSlavin, J. A., Baker, D. N., Fairfield, D. H., Craven, J. D., Frank, L. A., Elphic, R. C., Galvin, A. B., Richardson, I. G., Hughes, W. J., Manka, R. H., Mitchell, D. G., Sibeck, D. J., Sanderson, T. R., Smith, E. J., & Zwickl, R. D. ( 1989 ). CDAWâ 8 observations of plasmoid signatures in the geomagnetic tail: An assessment. Journal of Geophysical Research, 94, 15153.
dc.identifier.citedreferenceSlavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M., Owen, C. J., Moldwin, M. B., Nagai, T., Ieda, A., & Mukai, T. ( 2003 ). Geotail observations of magnetic flux ropes in the plasma sheet. Journal of Geophysical Research, 108 ( A1 ), 1015. https://doi.org/10.1029/2002JA009557
dc.identifier.citedreferenceSlavin, J. A., Lepping, R. P., Gjerloev, J., Goldstein, M. L., Fairfield, D. H., Acuna, M. H., Balogh, A., Dunlop, M., Kivelson, M. G., Khurana, K., Fazakerley, A., Owen, C. J., Reme, H., & Bosqued, J. M. ( 2003 ). Cluster electric current density measurements within a magnetic flux rope in the plasma sheet. Geophysical Research Letters, 30 ( 7 ), 1362. https://doi.org/10.1029/2002GL016411
dc.identifier.citedreferenceSonnerup, B. U. Ã ., & Scheible, M. ( 1998 ). Minimum and maximum variance analysis. In G. Paschmann & P. W. Daly (Eds.), Analysis methods for multiâ spacecraft data (pp. 185 â 220 ). Noordwijk, Netherlands: ESA Publication.
dc.identifier.citedreferenceStawarz, J. E., Eastwood, J. P., Genestreti, K. J., Nakamura, R., Ergun, R. E., Burgess, D., Burch, J. L., Fuselier, S. A., Gershman, D. J., Giles, B. L., le Contel, O., Lindqvist, P. A., Russell, C. T., & Torbert, R. B. ( 2018 ). Intense electric fields and electronâ scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission. Geophysical Research Letters, 45, 8783 â 8792. https://doi.org/10.1029/2018GL079095
dc.identifier.citedreferenceSun, W., Shi, Q. Q., Fu, S. Y., Zong, Q. G., Pu, Z. Y., Xie, L., Xiao, T., Li, L., Liu, Z. X., Reme, H., & Lucek, E. ( 2010 ). Statistical research on the motion properties of the magnetotail current sheet: Cluster observations. Science China Technological Sciences, 53 ( 6 ), 1732 â 1738. https://doi.org/10.1007/s11431â 010â 3153â y
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Wei, Y., Yao, Z. H., Rong, Z. J., Zhou, X. Z., Slavin, J. A., Wan, W. X., Zong, Q. G., Pu, Z. Y., Shi, Q. Q., & Shen, X. C. ( 2017 ). Plasma sheet pressure variations in the nearâ Earth magnetotail during substorm growth phase: THEMIS observations. Journal of Geophysical Research: Space Physics, 122, 12,212 â 12,228. https://doi.org/10.1002/2017JA024603
dc.identifier.citedreferenceTaylor, J. B. ( 1986 ). Relaxation and magnetic reconnection in plasmas. Reviews of Modern Physics, 58 ( 3 ), 741 â 763. https://doi.org/10.1103/RevModPhys.58.741
dc.identifier.citedreferenceTeh, W. L., Nakamura, T., Nakamura, R., & Umeda, T. ( 2018 ). Oblique ionâ scale magnetotail flux ropes generated by secondary tearing modes. Journal of Geophysical Research: Space Physics, 123, 8122 â 8130. https://doi.org/10.1029/2018JA025775
dc.identifier.citedreferenceTian, A., Shi, Q., Degeling, A. W., Bai, S., Yao, S., & Zhang, S. ( 2018 ). Analytical model test of methods to find the geometry and velocity of magnetic structures. Science China Technological Sciences. https://doi.org/10.1007/s11431â 018â 9350â 1
dc.identifier.citedreferenceVogiatzis, I. I., Isavnin, A., Zong, Q.â G., Sarris, E. T., Lu, S. W., & Tian, A. M. ( 2015 ). Dipolarization fronts in the nearâ Earth space and substorm dynamics. Annales de Geophysique, 33 ( 1 ), 63 â 74. https://doi.org/10.5194/angeoâ 33â 63â 2015
dc.identifier.citedreferenceWang, R., Lu, Q., Du, A., & Wang, S. ( 2010 ). In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons. Physical Review Letters, 104 ( 17 ), 175003. https://doi.org/10.1103/PhysRevLett.104.175003
dc.identifier.citedreferenceXing, X., Lyons, L. R., Nishimura, Y., Angelopoulos, V., Donovan, E., Spanswick, E., Liang, J., Larson, D., Carlson, C., & Auster, U. ( 2011 ). Nearâ earth plasma sheet azimuthal pressure gradient and associated auroral development soon before substorm onset. Journal of Geophysical Research, 116, A07204. https://doi.org/10.1029/2011JA016539
dc.identifier.citedreferenceYao, S. T., Wang, X. G., Shi, Q. Q., Pitkänen, T., Hamrin, M., Yao, Z. H., Li, Z. Y., Ji, X. F., de Spiegeleer, A., Xiao, Y. C., Tian, A. M., Pu, Z. Y., Zong, Q. G., Xiao, C. J., Fu, S. Y., Zhang, H., Russell, C. T., Giles, B. L., Guo, R. L., Sun, W. J., Li, W. Y., Zhou, X. Z., Huang, S. Y., Vaverka, J., Nowada, M., Bai, S. C., Wang, M. M., & Liu, J. ( 2017 ). Observations of kineticâ size magnetic holes in the magnetosheath. Journal of Geophysical Research: Space Physics, 122, 1990 â 2000. https://doi.org/10.1002/2016JA023858
dc.identifier.citedreferenceZhang, Y. C., Shen, C., Liu, Z. X., Rong, Z. J., Zhang, T. L., Marchaudon, A., Zhang, H., Duan, S. P., Ma, Y. H., Dunlop, M. W., Yang, Y. Y., Carr, C. M., & Dandouras, I. ( 2013 ). Two different types of plasmoids in the plasma sheet: Cluster multisatellite analysis application. Journal of Geophysical Research: Space Physics, 118, 5437 â 5444. https://doi.org/10.1002/jgra.50542
dc.identifier.citedreferenceZhao, C., Russell, C. T., Strangeway, R. J., Petrinec, S. M., Paterson, W. R., Zhou, M., Anderson, B. J., Baumjohann, W., Bromund, K. R., Chutter, M., Fischer, D., le, G., Nakamura, R., Plaschke, F., Slavin, J. A., Torbert, R. B., & Wei, H. Y. ( 2016 ). Force balance at the magnetopause determined with MMS: Application to flux transfer events. Geophysical Research Letters, 43, 11,941 â 11,947. https://doi.org/10.1002/2016GL071568
dc.identifier.citedreferenceZong, Q.â G., Wilken, B., Reeves, G. D., Daglis, I. A., Doke, T., Iyemori, T., Livi, S., Maezawa, K., Mukai, T., Kokubun, S., Pu, Z. Y., Ullaland, S., Woch, J., Lepping, R., & Yamamoto, T. ( 1997 ). Geotail observations of energetic ion species and magnetic field in plasmoidâ like structures in the course of an isolated substorm event. Journal of Geophysical Research, 102 ( A6 ), 11,409 â 11,428. https://doi.org/10.1029/97JA00076
dc.identifier.citedreferenceZong, Q.â G., Wilken, B., Woch, J., Mukai, T., Yamamoto, T., Reeves, G. D., Doke, T., Maezawa, K., Williams, D. J., Kokubun, S., & Ullaland, S. ( 1998 ). Energetic oxygen ion bursts in the distant magnetotail as a product of intense substorms: Three case studies. Journal of Geophysical Research, 103 ( A9 ), 20,339 â 20,363. https://doi.org/10.1029/97JA01146
dc.identifier.citedreferenceHu, Q., & Sonnerup, B. U. O. ( 2003 ). Reconstruction of twoâ dimensional structures in the magnetopause: Method improvements. Journal of Geophysical Research, 108 ( A1 ), 1011. https://doi.org/10.1029/2002JA009323
dc.identifier.citedreferenceAkhavanâ Tafti, M., Slavin, J. A., Le, G., Eastwood, J. P., Strangeway, R. J., Russell, C. T., Nakamura, R., Baumjohann, W., Torbert, R. B., Giles, B. L., Gershman, D. J., & Burch, J. L. ( 2018 ). MMS examination of FTEs at the Earth’s subsolar Magnetopause. Journal of Geophysical Research: Space Physics, 123, 1224 â 1241. https://doi.org/10.1002/2017JA024681
dc.identifier.citedreferenceBurch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric Multiscale overview and science objectives. Space Science Reviews, 199 ( 1â 4 ), 5 â 21. https://doi.org/10.1007/s11214â 015â 0164â 9
dc.identifier.citedreferenceChen, L. J., Bhattacharjee, A., Puhlâ Quinn, P. A., Yang, H., Bessho, N., Imada, S., Mühlbachler, S., Daly, P. W., Lefebvre, B., Khotyaintsev, Y., Vaivads, A., Fazakerley, A., & Georgescu, E. ( 2007 ). Observation of energetic electrons within magnetic islands. Nature Physics, 4 ( 1 ), 19 â 23. https://doi.org/10.1038/nphys777
dc.identifier.citedreferenceChen, Y., Tóth, G., Cassak, P., Jia, X., Gombosi, T. I., Slavin, J. A., Markidis, S., Peng, I. B., Jordanova, V. K., & Henderson, M. G. ( 2017 ). Global threeâ dimensional simulation of Earth’s dayside reconnection using a twoâ way coupled magnetohydrodynamics with embedded particleâ inâ cell model: Initial results. Journal of Geophysical Research: Space Physics, 122, 10,318 â 10,335. https://doi.org/10.1002/2017JA024186
dc.identifier.citedreferenceDaughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B., & Bowers, K. J. ( 2011 ). Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Physics, 7 ( 7 ), 539 â 542. https://doi.org/10.1038/nphys1965
dc.identifier.citedreferenceDaughton, W., Scudder, J., & Karimabadi, H. ( 2006 ). Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Physics of Plasmas, 13 ( 7 ), 072101. https://doi.org/10.1063/1.2218817
dc.identifier.citedreferenceDenton, R. E., Sonnerup, B. U. Ã ., Russell, C. T., Hasegawa, H., Phan, T. D., Strangeway, R. J., Giles, B. L., Ergun, R. E., Lindqvist, P. A., Torbert, R. B., Burch, J. L., & Vines, S. K. ( 2018 ). Determining Lâ Mâ N current sheet coordinates at the magnetopause from Magnetospheric Multiscale data. Journal of Geophysical Research: Space Physics, 123, 2274 â 2295. https://doi.org/10.1002/2017JA024619
dc.identifier.citedreferenceDong, X.â C., Dunlop, M. W., Trattner, K. J., Phan, T. D., Fu, H. S., Cao, J. B., Russell, C. T., Giles, B. L., Torbert, R. B., le, G., & Burch, J. L. ( 2017 ). Structure and evolution of flux transfer events near dayside magnetic reconnection dissipation region: MMS observations. Geophysical Research Letters, 44, 5951 â 5959. https://doi.org/10.1002/2017GL073411
dc.identifier.citedreferenceDrake, J. F., Swisdak, M., Che, H., & Shay, M. A. ( 2006 ). Electron acceleration from contracting magnetic islands during reconnection. Nature, 443 ( 7111 ), 553 â 556. https://doi.org/10.1038/nature05116
dc.identifier.citedreferenceDrake, J. F., Swisdak, M., Schoeffler, K. M., Rogers, B. N., & Kobayashi, S. ( 2006 ). Formation of secondary islands during magnetic reconnection. Geophysical Research Letters, 33, L13105. https://doi.org/10.1029/2006GL025957
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Cassak, P. A., Gershman, D. J., Haggerty, C., Malakit, K., Shay, M. A., Mistry, R., Ã ieroset, M., Russell, C. T., Slavin, J. A., Argall, M. R., Avanov, L. A., Burch, J. L., Chen, L. J., Dorelli, J. C., Ergun, R. E., Giles, B. L., Khotyaintsev, Y., Lavraud, B., Lindqvist, P. A., Moore, T. E., Nakamura, R., Paterson, W., Pollock, C., Strangeway, R. J., Torbert, R. B., & Wang, S. ( 2016 ). Ionâ scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS. Geophysical Research Letters, 43, 4716 â 4724. https://doi.org/10.1002/2016GL068747
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Mozer, F. S., Shay, M. A., Fujimoto, M., Retinò, A., Hesse, M., Balogh, A., Lucek, E. A., & Dandouras, I. ( 2007 ). Multiâ point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection. Journal of Geophysical Research, 112, A06235. https://doi.org/10.1029/2006JA012158
dc.identifier.citedreferenceFuselier, S. A., Lewis, W. S., Schiff, C., Ergun, R., Burch, J. L., Petrinec, S. M., & Trattner, K. J. ( 2016 ). Magnetospheric Multiscale science mission profile and operations. Space Science Reviews, 199 ( 1â 4 ), 77 â 103. https://doi.org/10.1007/s11214â 014â 0087â x
dc.identifier.citedreferenceHasegawa, H., Sonnerup, B. U. Ã ., Denton, R. E., Phan, T. D., Nakamura, T. K. M., Giles, B. L., Gershman, D. J., Dorelli, J. C., Burch, J. L., Torbert, R. B., Russell, C. T., Strangeway, R. J., Lindqvist, P. A., Khotyaintsev, Y. V., Ergun, R. E., Cassak, P. A., Kitamura, N., & Saito, Y. ( 2017 ). Reconstruction of the electron diffusion region observed by the Magnetospheric Multiscale spacecraft: First results. Geophysical Research Letters, 44, 4566 â 4574. https://doi.org/10.1002/2017GL073163
dc.identifier.citedreferenceHau, L. N., & Sonnerup, B. U. Ã . ( 1999 ). Twoâ dimensional coherent structures in the magnetopause: Recovery of static equilibria from singleâ spacecraft data. Journal of Geophysical Research, 104 ( A4 ), 6899 â 6917. https://doi.org/10.1029/1999JA900002
dc.identifier.citedreferenceHones, E. W. ( 1977 ). Substorm processes in the magnetotail: Comments on â On hot tenuous plasmas, fireballs, and boundary layers in the Earth’s magnetotailâ by L. A. Frank, K. L. Ackerson, and R. P. Lepping. Journal of Geophysical Research, 82 ( 35 ), 5633 â 5640. https://doi.org/10.1029/JA082i035p05633
dc.identifier.citedreferenceHones, E. W., Birn, J., Baker, D. N., Bame, S. J., Feldman, W. C., McComas, D. J., Zwickl, R. D., Slavin, J. A., Smith, E. J., & Tsurutani, B. T. ( 1984 ). Detailed examination of a plasmoid in the distant magnetotail with ISEE 3. Geophysical Research Letters, 11 ( 10 ), 1046 â 1049. https://doi.org/10.1029/GL011i010p01046
dc.identifier.citedreferenceHu, Q., & Sonnerup, B. U. Ã . ( 2002 ). Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. Journal of Geophysical Research, 107 ( A7 ), 1142. https://doi.org/10.1029/2001JA000293
dc.identifier.citedreferenceIeda, A., Machida, S., Mukai, T., Saito, Y., Yamamoto, T., Nishida, A., Terasawa, T., & Kokubun, S. ( 1998 ). Statistical analysis of the plasmoid evolution with Geotail observations. Journal of Geophysical Research, 103 ( A3 ), 4453 â 4465. https://doi.org/10.1029/97JA03240
dc.identifier.citedreferenceLi, Z.â Y., Sun, W.â J., Wang, X.â G., Shi, Q.â Q., Xiao, C.â J., Pu, Z.â Y., Ji, X.â F., Yao, S.â T., & Fu, S.â Y. ( 2016 ). An EMHD soliton model for smallâ scale magnetic holes in magnetospheric plasmas. Journal of Geophysical Research: Space Physics, 121, 4180 â 4190. https://doi.org/10.1002/2016JA022424
dc.identifier.citedreferenceLiu, Y., Pu, Z., Xie, L., Guo, R., Wang, X., Xiao, C., Shi, Q., Dunlop, M., Bogdanova, Y. V., Moore, T. E., Russell, C. T., Lindqvist, P. A., Torbert, R. B., Pollock, C., & Zhao, C. ( 2018 ). Ionâ scale structures in flux ropes observed by MMS at the magnetopause (in Chinese). Chinese Journal of Space Science, 38 ( 2 ), 147 â 168. https://doi.org/10.11728/cjss2018.02.147
dc.identifier.citedreferenceLu, S., Lu, Q., Lin, Y., Wang, X., Ge, Y., Wang, R., Zhou, M., Fu, H., Huang, C., Wu, M., & Wang, S. ( 2015 ). Dipolarization fronts as earthward propagating flux ropes: A threeâ dimensional global hybrid simulation. Journal of Geophysical Research: Space Physics, 120, 6286 â 6300. https://doi.org/10.1002/2015JA021213
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.