Show simple item record

Whole‐cell biocatalysis platform for gram‐scale oxidative dearomatization of phenols

dc.contributor.authorBaker Dockrey, Summer A.
dc.contributor.authorDoyon, Tyler J.
dc.contributor.authorPerkins, Jonathan C.
dc.contributor.authorNarayan, Alison R. H.
dc.date.accessioned2019-08-09T17:13:59Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-08-09T17:13:59Z
dc.date.issued2019-06
dc.identifier.citationBaker Dockrey, Summer A.; Doyon, Tyler J.; Perkins, Jonathan C.; Narayan, Alison R. H. (2019). "Whole‐cell biocatalysis platform for gram‐scale oxidative dearomatization of phenols." Chemical Biology & Drug Design (6): 1207-1213.
dc.identifier.issn1747-0277
dc.identifier.issn1747-0285
dc.identifier.urihttps://hdl.handle.net/2027.42/150545
dc.description.abstractTechnologies enabling new enzyme discovery and efficient protein engineering have spurred intense interest in the development of biocatalytic reactions. In recent years, whole‐cell biocatalysis has received attention as a simple, efficient, and scalable biocatalytic reaction platform. Inspired by these developments, we have established a whole‐cell protocol for oxidative dearomatization of phenols using the flavin‐dependent monooxygenase, TropB. This approach provides a scalable biocatalytic platform for accessing gram‐scale quantities of chiral synthetic building blocks.The development of scalable and economical biocatalytic reaction platforms is critical for the application of biocatalysis in synthetic chemistry. Therefore, we have established a whole‐cell method for the oxidative dearomatization of phenols using the flavin‐dependent monooxygenase, TropB. In comparison with reactions using isolated enzyme, our whole‐cell method allowed us to perform tenfold more reactions per liter of cell culture, without loss of site‐ or stereoselectivity.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwhole‐cell reactions
dc.subject.otherbiocatalysis
dc.subject.otherflavin‐dependent monooxygenase
dc.subject.otheroxidative dearomatization
dc.subject.otherpreparative‐scale
dc.titleWhole‐cell biocatalysis platform for gram‐scale oxidative dearomatization of phenols
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150545/1/cbdd13443.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150545/2/cbdd13443_am.pdf
dc.identifier.doi10.1111/cbdd.13443
dc.identifier.sourceChemical Biology & Drug Design
dc.identifier.citedreferenceSheldon, R. A., & Woodley, J. M. ( 2018 ). Role of biocatalysis in sustainable chemistry. Chemical Reviews, 118, 801 – 838.
dc.identifier.citedreferenceHadi, T., Dı́az‐Rodrı́guez, A., Khan, D., Morrison, J. P., Kaplan, J. M., Gallagher, K. T., … Roiban, G.‐D. ( 2018 ). Identification and implementation of biocatalytic transformations in route discovery: Synthesis of chiral 1,3‐substituted cyclohexanone building blocks. Organic Process Research & Development, 22 ( 7 ), 871 – 879.
dc.identifier.citedreferenceKaluzna, I., Schmitges, T., Straatman, H., van Tegelen, D., Müller, M., Schürmann, M., & Mink, D. ( 2016 ). Enabling selective and sustainable p450 oxygenation technology. production of 4‐hydroxy‐α‐isophorone on kilogram scale. Organic Process Research & Development, 20, 814 – 819.
dc.identifier.citedreferenceLi, A., Ilie, A., Sun, Z., Lonsdale, R., Xu, J.‐H., & Reetz, M. T. ( 2016 ). Whole‐cell catalyzed multiple regio‐ and stereoselective functionalizations in cascade reactions enabled by directed evolution. Angewandte Chemie International Edition, 55, 12026 – 12029.
dc.identifier.citedreferenceLiang, J. F., Li, Y. T., & Yang, V. C. ( 2000 ). Biomedical application of immobilized enzymes. Journal of Pharmaceutical Sciences, 89, 979 – 990.
dc.identifier.citedreferenceLin, B., & Tao, Y. ( 2017 ). Whole‐cell biocatalysts by design. Microbial Cell Factories, 16, 106.
dc.identifier.citedreferenceMatsuyama, A., Yamamoto, H., & Kobayashi, Y. ( 2002 ). Practical application of recombinant whole‐cell biocatalysts for the manufacturing of pharmaceutical intermediates such as chiral alcohols. Organic Process Research & Development, 6, 558 – 561.
dc.identifier.citedreferenceMilker, S., Fink, M. J., Rudroff, F., & Mihovilovic, M. D. ( 2017 ). Non‐hazardous biocatalytic oxidation in Nylon‐9 monomer synthesis on a 40 g scale with efficient downstream processing. Biotechnology and Bioengineering, 114, 1670 – 1678.
dc.identifier.citedreferenceParmeggiani, F., Weise, N. J., Ahmed, S. T., & Turner, N. J. ( 2018 ). Synthetic and therapeutic applications of ammonia‐lyases and aminomutases. Chemical Reviews, 118, 73 – 118.
dc.identifier.citedreferenceRandolph, T. W. ( 1997 ). Phase separation of excipients during lyophilization: Effects on protein stability. Journal of Pharmaceutical Sciences, 86, 1198 – 1203.
dc.identifier.citedreferenceRoche, S. P., & Porco Jr, J. A. ( 2011 ). Dearomatization strategies in the synthesis of complex natural products. Angewandte Chemie (International ed. in English), 50, 4068 – 4093.
dc.identifier.citedreferenceRudroff, F., Mihovilovic, M. D., Gröger, H., Snajdrova, R., Iding, H., & Bornscheuer, U. T. ( 2018 ). Opportunities and challenges for combining chemo‐ and biocatalysis. Nature Catalysis, 1, 12 – 22.
dc.identifier.citedreferenceSchrittwieser, J. H., Velikogne, S., Hall, M., & Kroutil, W. ( 2018 ). Artificial biocatalytic linear cascades for preparation of organic molecules. Chemical Reviews, 118, 270 – 348.
dc.identifier.citedreferenceSheldon, R. A., & van Pelt, S. ( 2013 ). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42, 6223 – 6235.
dc.identifier.citedreferenceGuo, X., Tang, J.‐W., Yang, J.‐T., Ni, G.‐W., Zhang, F.‐L., & Chen, S.‐X. ( 2017 ). Development of a practical enzymatic process for preparation of (S)‐2‐Chloro‐1‐(3,4‐difluorophenyl)ethanol. Organic Process Research & Development, 21, 1595 – 1601.
dc.identifier.citedreferenceSoares, J. C., Moreira, P. R., Queiroga, A. C., Morgado, J., Malcata, F. X., & Pintado, M. E. ( 2011 ). Application of immobilized enzyme technologies for the textile industry: A review. Biocatalysis and Biotransformation, 29, 223 – 237.
dc.identifier.citedreferenceTamborini, L., Fernandes, P., Paradisi, F., & Molinari, F. ( 2018 ). Flow bioreactors as complementary tools for biocatalytic process intensification. Trends in Biotechnology, 36, 73 – 88.
dc.identifier.citedreferenceUllrich, R., & Hofrichter, M. ( 2007 ). Enzymatic hydroxylation of aromatic compounds.. Cellular and Molecular Life Sciences, 64, 271 – 293.
dc.identifier.citedreferenceVolp, K. A., & Harned, A. M. ( 2013 ). Chiral aryl iodide catalysts for the enantioselective synthesis of para ‐quinols. Chemical Communications (Cambridge, England), 49, 3001 – 3003.
dc.identifier.citedreferenceWachtmeister, J., Mennicken, P., Hunold, A., & Rother, D. ( 2016 ). Modularized biocatalysis: Immobilization of whole cells for preparative applications in microaqueous organic solvents. ChemCatChem, 8, 607 – 614.
dc.identifier.citedreferenceWachtmeister, J., & Rother, D. ( 2016 ). Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Current Opinion in Biotechnology, 42, 169 – 177.
dc.identifier.citedreferenceWu, W. T., Zhang, L., & You, S. L. ( 2016 ). Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives. Chemical Society Reviews, 45, 1570 – 1580.
dc.identifier.citedreferenceXie, X., & Tang, Y. ( 2007 ). Efficient synthesis of simvastatin by use of whole‐cell biocatalysis. Applied and Environment Microbiology, 73, 2054 – 2060.
dc.identifier.citedreferenceZhu, J., Grigoriadis, N. P., Lee, J. P., & Porco, J. A. ( 2005 ). Synthesis of the azaphilones using copper‐mediated enantioselective oxidative dearomatization. Journal of the American Chemical Society, 127, 9342 – 9343.
dc.identifier.citedreferenceAbood, A., Al‐Fahad, A., Scott, A., Hosny, A. E.‐D. M. S., Hashem, A. M., Fattah, A. M. A., … Cox, R. J. ( 2015 ). Kinetic characterisation of the FAD dependent monooxygenase TropB and investigation of its biotransformation potential. RSC Advances, 5, 49987 – 49995.
dc.identifier.citedreferenceBaheti, A., Kumar, L., & Bansal, A. K. ( 2010 ). Excipients used in lyophilization of small molecules. Journal of Excipients and Food Chemicals, 41, 41 – 54.
dc.identifier.citedreferenceBaker Dockrey, S. A., Lukowski, A. L., Becker, M. R., & Narayan, A. R. H. ( 2018 ). Biocatalytic site‐ and enantioselective oxidative dearomatization of phenols. Nature Chemistry, 10, 119.
dc.identifier.citedreferenceBedu‐Addu, F. K. ( 2004 ). Understanding lyophilization formulationdevelopment. Pharmaceutical Technology (Lyophilization), 2004 ( 2 ), 10 – 18.
dc.identifier.citedreferenceBommarius, A. S. ( 2015 ). Biocatalysis: A status report. Annual Review of Chemical and Biomolecular Engineering, 6, 319 – 345.
dc.identifier.citedreferenceBornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. ( 2012 ). Engineering the third wave of biocatalysis.. Nature, 485, 185.
dc.identifier.citedreferenceBosset, C., Coffinier, R., Peixoto, P. A., El Assal, M., Miqueu, K., Sotiropoulos, J. M., … Quideau, S. ( 2014 ). Asymmetric hydroxylative phenol dearomatization promoted by chiral binaphthylic and biphenylic iodanes. Angewandte Chemie (International ed. in English), 53, 9860 – 9864.
dc.identifier.citedreferenceBoth, P., Busch, H., Kelly, P. P., Mutti, F. G., Turner, N. J., & Flitsch, S. L. ( 2016 ). Whole‐cell biocatalysis for stereoselective C‐H amination reactions. Angewandte Chemie International Edition, 55, 1511 – 1513.
dc.identifier.citedreferenceBritton, J., Majumdar, S., & Weiss, G. A. ( 2018 ). Continuous flow biocatalysis. Chemical Society Reviews, 47, 5891 – 5918.
dc.identifier.citedreferencede Carvalho, C. C. ( 2017 ). Whole cell biocatalysts: Essential workers from Nature to the industry. Microbial Biotechnology, 10, 250 – 263.
dc.identifier.citedreferenceDavison, J., Al Fahad, A., Cai, M., Song, Z., Yehia, S. Y., Lazarus, C. M., … Cox, R. J. ( 2012 ). Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 109, 7642 – 7647.
dc.identifier.citedreferenceGao, J. M., Yang, S. X., & Qin, J. C. ( 2013 ). Azaphilones: Chemistry and biology. Chemical Reviews, 113, 4755 – 4811.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.