Show simple item record

Intratumor genetic heterogeneity in squamous cell carcinoma of the oral cavity

dc.contributor.authorZandberg, Dan P.
dc.contributor.authorTallon, Luke J.
dc.contributor.authorNagaraj, Sushma
dc.contributor.authorSadzewicz, Lisa K.
dc.contributor.authorZhang, Yuji
dc.contributor.authorStrome, Maxwell B.
dc.contributor.authorZhao, Xuechu E.
dc.contributor.authorVavikolanu, Kranthi
dc.contributor.authorZhang, Xiaoyu
dc.contributor.authorPapadimitriou, John C.
dc.contributor.authorHubbard, Fleesie A.
dc.contributor.authorBentzen, Søren M.
dc.contributor.authorStrome, Scott E.
dc.contributor.authorFraser, Claire M.
dc.date.accessioned2019-08-09T17:14:06Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-08-09T17:14:06Z
dc.date.issued2019-08
dc.identifier.citationZandberg, Dan P.; Tallon, Luke J.; Nagaraj, Sushma; Sadzewicz, Lisa K.; Zhang, Yuji; Strome, Maxwell B.; Zhao, Xuechu E.; Vavikolanu, Kranthi; Zhang, Xiaoyu; Papadimitriou, John C.; Hubbard, Fleesie A.; Bentzen, Søren M. ; Strome, Scott E.; Fraser, Claire M. (2019). "Intratumor genetic heterogeneity in squamous cell carcinoma of the oral cavity." Head & Neck 41(8): 2514-2524.
dc.identifier.issn1043-3074
dc.identifier.issn1097-0347
dc.identifier.urihttps://hdl.handle.net/2027.42/150549
dc.description.abstractBackgroundWe sought to evaluate intratumor heterogeneity in squamous cell carcinoma of the oral cavity (OCC) and specifically determine the effect of physical separation and histologic differentiation within the same tumor.MethodsWe performed whole exome sequencing on five biopsy sites—two from well‐differentiated, two from poorly differentiated regions, and one from normal parenchyma—from five primary OCC specimens.ResultsWe found high levels of intratumor heterogeneity and, in four primary tumors, identified only 0 to 2 identical mutations in all subsites. We found that the heterogeneity inversely correlated with physical separation and that pairs of well‐differentiated samples were more similar to each other than analogous poorly differentiated specimens. Only TP53 mutations, but not other purported “driver mutations” in head and neck squamous cell carcinoma, were found in multiple biopsy sites.ConclusionThese data highlight the challenges to characterization of the mutational landscape of OCC with single site biopsy and have implications for personalized medicine.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othergenetic
dc.subject.otherSCCHN
dc.subject.otheroral cavity
dc.subject.othersquamous cell carcinoma
dc.subject.otherheterogeneity
dc.titleIntratumor genetic heterogeneity in squamous cell carcinoma of the oral cavity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOtolaryngology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150549/1/hed25719.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150549/2/hed25719_am.pdf
dc.identifier.doi10.1002/hed.25719
dc.identifier.sourceHead & Neck
dc.identifier.citedreferenceWang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high‐throughput sequencing data. Nucleic Acids Res. 2010; 38: e164.
dc.identifier.citedreferenceRizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD‐1 blockade in non‐small cell lung cancer. Science. 2015; 348: 124 ‐ 128.
dc.identifier.citedreferenceLe DT, Uram JN, Wang H, et al. PD‐1 blockade in tumors with mismatch‐repair deficiency. N Engl J Med. 2015; 372: 2509 ‐ 2520.
dc.identifier.citedreferenceLe DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD‐1 blockade. Science. 2017; 357: 409 ‐ 413.
dc.identifier.citedreferenceMcGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016; 351: 1463 ‐ 1469.
dc.identifier.citedreferenceMelief CJM, van Hall T, Arens R, Ossendorp F, van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015; 125: 3401 ‐ 3412.
dc.identifier.citedreferenceStransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011; 333: 1157 ‐ 1160.
dc.identifier.citedreferenceAgrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011; 333: 1154 ‐ 1157.
dc.identifier.citedreferenceThe Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015; 517: 576 ‐ 582.
dc.identifier.citedreferenceYan LI, Zhan C, Wu J, Wang S. Expression profile analysis of head and neck squamous cell carcinomas using data from The Cancer Genome Atlas. Mol Med Rep. 2016; 13: 4259 ‐ 4265.
dc.identifier.citedreferenceGerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012; 366: 883 ‐ 892.
dc.identifier.citedreferenceYachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010; 467: 1114 ‐ 1117.
dc.identifier.citedreferencede Bruin EC, McGranahan N, Mitter R, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science. 2014; 346: 251 ‐ 256.
dc.identifier.citedreferenceJamal‐Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non–small‐cell lung cancer. N Engl J Med. 2017; 376: 2109 ‐ 2121.
dc.identifier.citedreferenceZhang J, Fujimoto J, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014; 346: 256 ‐ 259.
dc.identifier.citedreferenceFavero F, Joshi T, Marquard AM, et al. Sequenza: allele‐specific copy number and mutation profiles from tumor sequencing data. Ann Oncol. 2015; 26: 64 ‐ 70.
dc.identifier.citedreferenceLi H, Durbin R. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics. 2009; 25: 1754 ‐ 1760.
dc.identifier.citedreferenceLi H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25: 2078 ‐ 2079.
dc.identifier.citedreferenceVan der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43: 11 10 ‐ 11–33.
dc.identifier.citedreferenceCibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotech. 2013; 31: 213 ‐ 219.
dc.identifier.citedreferenceKoboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012; 22: 568 ‐ 576.
dc.identifier.citedreferenceReva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011; 39: e118.
dc.identifier.citedreferenceForbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015; 43: D805 ‐ D811.
dc.identifier.citedreferenceLawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014; 505: 495 ‐ 501.
dc.identifier.citedreferenceSchwarzer G. meta: an R package for meta‐analysis. R News. 2007; 7: 40 ‐ 45.
dc.identifier.citedreferenceLedgerwood LG, Kumar D, Eterovic AK, et al. The degree of intratumor mutational heterogeneity varies by primary tumor sub‐site. Oncotarget. 2016; 7: 27185 ‐ 27198.
dc.identifier.citedreferenceZhang XC, Xu C, Mitchell RM, et al. Tumor evolution and intratumor heterogeneity of an oropharyngeal squamous cell carcinoma revealed by whole‐genome sequencing. Neoplasia. 2013; 15: 1371 ‐ 1378.
dc.identifier.citedreferenceMcGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017; 168: 613 ‐ 628.
dc.identifier.citedreferenceCalifano J, van der Riet P, Westra W, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996; 56: 2488 ‐ 2492.
dc.identifier.citedreferenceFearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990; 61: 759 ‐ 767.
dc.identifier.citedreferenceNowell P. The clonal evolution of tumor cell populations. Science. 1976; 194: 23 ‐ 28.
dc.identifier.citedreferenceFisher R, Horswell S, Rowan A, et al. Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution. Genome Biol. 2014; 15: 433.
dc.identifier.citedreferenceCampbell PJ, Yachida S, Mudie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010; 467: 1109 ‐ 1113.
dc.identifier.citedreferenceGerlinger M, Horswell S, Larkin J, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014; 46: 225 ‐ 233.
dc.identifier.citedreferenceChaturvedi AK, Anderson WF, Lortet‐Tieulent J, et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol. 2013; 31: 4550 ‐ 4559.
dc.identifier.citedreferenceStrome SE, Savva A, Brissett AE, et al. Squamous cell carcinoma of the tonsils: a molecular analysis of HPV associations. Clin Cancer Res. 2002; 8: 1093 ‐ 1100.
dc.identifier.citedreferenceAng KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010; 363: 24 ‐ 35.
dc.identifier.citedreferenceD’Cruz AK, Vaish R, Kapre N, et al. Elective versus therapeutic neck dissection in node‐negative oral cancer. N Engl J Med. 2015; 373: 521 ‐ 529.
dc.identifier.citedreferenceMroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW. Intra‐tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015; 12: e1001786.
dc.identifier.citedreferenceRocco JW. Mutant allele tumor heterogeneity (MATH) and head and neck squamous cell carcinoma. Head Neck Pathol. 2015; 9: 1 ‐ 5.
dc.identifier.citedreferenceMroz EA, Rocco JW. Intra‐tumor heterogeneity in head and neck cancer and its clinical implications. World J Otorhinolaryngol Head Neck Surg. 2016; 2: 60 ‐ 67.
dc.identifier.citedreferenceSnyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA‐4 blockade in melanoma. N Engl J Med. 2014; 371: 2189 ‐ 2199.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.