Show simple item record

Transient Ionospheric Upflow Driven by Poleward Moving Auroral forms Observed During the Rocket Experiment for Neutral Upwelling 2 (RENU2) Campaign

dc.contributor.authorBurleigh, M.
dc.contributor.authorZettergren, M.
dc.contributor.authorLynch, K.
dc.contributor.authorLessard, M.
dc.contributor.authorMoen, J.
dc.contributor.authorClausen, L.
dc.contributor.authorKenward, D.
dc.contributor.authorHysell, D.
dc.contributor.authorLiemohn, M.
dc.date.accessioned2019-08-09T17:14:25Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-08-09T17:14:25Z
dc.date.issued2019-06-28
dc.identifier.citationBurleigh, M.; Zettergren, M.; Lynch, K.; Lessard, M.; Moen, J.; Clausen, L.; Kenward, D.; Hysell, D.; Liemohn, M. (2019). "Transient Ionospheric Upflow Driven by Poleward Moving Auroral forms Observed During the Rocket Experiment for Neutral Upwelling 2 (RENU2) Campaign." Geophysical Research Letters 46(12): 6297-6305.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/150562
dc.description.abstractThis study examines cumulative effects of a series of poleward moving auroral forms on ion upflow and downflow. These effects are investigated using an ionospheric model with inputs derived from the Rocket Experiment for Neutral Upwelling 2 (RENU2) sounding rocket campaign. Auroral precipitation inputs are constrained by all‐sky imager brightness values resulting in significant latitudinal structuring in simulated ionospheric upflows due to transient forcing. For contrast, a case with steady forcing generates almost double the O+ upflow transport through 1,000 km when compared to poleward moving auroral form‐like structures. At high altitudes, model results show a spread in upflow response time dependent on ion mass, with molecular ions responding slower than atomic ions by several minutes. While the modeled auroral precipitation is not strong enough to accelerate ions to escape velocities, source populations available for higher‐altitude energization processes are greatly impacted by variable forcing exhibited by the RENU2 event.Key PointsImager data provide realistic transient forcing constraints for model inputs to simulate observations from a high‐latitude rocket flightTransient forcing deposits energy over a wider latitudinal region but less energy in any specific locationModeling a sequence of poleward moving auroral forms with realistic spatiotemporal variability generates significant latitudinal structuring
dc.publisherWiley Periodicals, Inc.
dc.subject.otherion response time varies with ion mass
dc.subject.otherpoleward moving auroral forms
dc.subject.otherionospheric downflow
dc.subject.otherlatitudinal variation in ion response
dc.subject.otherRENU2 sounding rocket campaign
dc.subject.otherionospheric upflow
dc.titleTransient Ionospheric Upflow Driven by Poleward Moving Auroral forms Observed During the Rocket Experiment for Neutral Upwelling 2 (RENU2) Campaign
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150562/1/grl59002.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150562/2/grl59002-sup-0001-Text_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150562/3/grl59002_am.pdf
dc.identifier.doi10.1029/2018GL081886
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSanchez, E. R., & Strømme, A. ( 2014 ). Incoherent scatter radar‐FAST satellite common volume observations of upflow‐to‐outflow conversion. Journal of Geophysical Research: Space Physics, 119, 2649 – 2674. https://doi.org/10.1002/2013JA019096
dc.identifier.citedreferenceHuba, J. D., Joyce, G., & Fedder, J. A. ( 2000 ). Sami2 is Another Model of the Ionosphere (SAMI2): A new low‐latitude ionosphere model. Journal of Geophysical Research, 105 ( A10 ), 23,035 – 23,054. https://doi.org/10.1029/2000JA000035
dc.identifier.citedreferenceHultqvist, B., Øieroset, M., Paschmann, G., & Treumann, R. ( 1999 ). Magnetospheric plasma sources and losses. Space Science Reviews, 88, 1 – 2.
dc.identifier.citedreferenceKintner, P. M., Bonnell, J., Arnoldy, R., Lynch, K., Pollock, C., & Moore, T. ( 1996 ). SCIFER‐Transverse ion acceleration and plasma waves. Geophysical Research Letters, 23, 1873 – 1876.
dc.identifier.citedreferenceKistler, L. M., Mouikis, C., MöBius, E., Klecker, B., Sauvaud, J. A., Réme, H., Korth, A., Marcucci, M. F., Lundin, R., Parks, G. K., & Balogh, A. ( 2005 ). Contribution of nonadiabatic ions to the cross‐tail current in an O+ dominated thin current sheet. Journal of Geophysical Research, 110, A06213. https://doi.org/10.1029/2004JA010653
dc.identifier.citedreferenceKozlovsky, A., & Kangas, J. ( 2002 ). Motion and origin of noon high‐latitude poleward moving auroral arcs on closed magnetic field lines. Journal of Geophysical Research, 107 ( A2 ), 1017. https://doi.org/10.1029/2001JA900145
dc.identifier.citedreferenceKozyra, J. U., Shelley, E. G., Comfort, R. H., Brace, L. H., Cravens, T. E., & Nagy, A. F. ( 1987 ). The role of ring current O+ in the formation of stable auroral red arcs. Journal of Geophysical Research, 92 ( A7 ), 7487 – 7502. https://doi.org/10.1029/JA092iA07p07487
dc.identifier.citedreferenceLessard, M. R., Fritz, B., Sadler, B., Cohen, I., Kenward, D., Godbole, N., Clemmons, J. H., Hecht, J. H., Lynch, K. A., Harrington, M., Roberts, T. M., Hysell, D., Crowely, G., Sigernes, F., Syrjäsuo, M., Ellingson, P., Partamies, N., Moen, J., Clausen, L., Oksavik, K., & Yeoman, T. ( 2019 ). Overview of the Rocket Experiment for Neutral Upwelling Sounding Rocket 2 (RENU2). Geophysical Research Letters. https://doi.org/10.1029/2018GL081885
dc.identifier.citedreferenceLundberg, E. T., Kintner, P. M., Lynch, K. A., & Mella, M. R. ( 2012 ). Multi‐payload measurement of transverse velocity shears in the topside ionosphere. Geophysical Research Letters, 39, L01107. https://doi.org/10.1029/2011GL050018
dc.identifier.citedreferenceLundberg, E. T., Kintner, P. M., Powell, S. P., & Lynch, K. A. ( 2012 ). Multi‐payload interferometric wave vector determination of auroral hiss. Journal of Geophysical Research, 117, A02306. https://doi.org/10.1029/2011JA017037
dc.identifier.citedreferenceLynch, K. A., Semeter, J. L., Zettergren, M., & Kinter, P. ( 2007 ). Auroral ion outflow: Low altitude energization. Annales Geophysicae, 25, 1967 – 1977.
dc.identifier.citedreferenceMoen, J., Oksavik, K., & Carlson, H. C. ( 2004 ). On the relationship between ion upflow events and cusp auroral transients. Geophysical Research Letters, 31, L11808. https://doi.org/10.1029/2004GL020129
dc.identifier.citedreferenceMoore, T. E., & Delcourt, D. C. ( 1995 ). The geopause. Reviews of Geophysics, 33 ( 2 ), 175 – 209. https://doi.org/10.1029/95RG00872
dc.identifier.citedreferenceMoore, T. E., Fok, M. C., Chandler, M. O., Chappell, C. R., Christon, S. P., Delcourt, D. C., Fedder, J., Huddleston, M., Liemohn, M., Peterson, W. K., & Slinker, S. ( 2005 ). Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources. Journal of Geophysical Research, 110, A02210. https://doi.org/10.1029/2004JA010563
dc.identifier.citedreferenceMoore, T. E., & Horwitz, J. L. ( 2007 ). Stellar ablation of planetary atmospheres. Reviews of Geophysics, 45, RG3002. https://doi.org/10.1029/2005RG000194
dc.identifier.citedreferenceNosé, M., Taguchi, S., Hosokawa, K., Christon, S., McEntire, R., Moore, T., & Collier, M. ( 2005 ). Overwhelming O+ contribution to the plasma sheet energy density during the October 2003 superstorm: Geotail/EPIC and IMAGE/LENA observations. Journal of Geophysical Research, 110, A09S24. https://doi.org/10.1029/2004JA010930
dc.identifier.citedreferenceOrsini, S., Candidi, M., Stokholm, M., & Balsiger, H. ( 1990 ). Injection of ionospheric ions into the plasma sheet. Journal of Geophysical Research, 95 ( A6 ), 7915 – 7928. https://doi.org/10.1029/JA095iA06p07915
dc.identifier.citedreferenceSadler, F. B., Lessard, M., Lund, E., Otto, A., & Lühr, H. ( 2012 ). Auroral precipitation/ion upwelling as a driver of neutral density enhancement in the cusp. Journal of Atmospheric and Solar‐Terrestrial Physics, 87–88, 82 – 90. https://doi.org/10.1016/j.jastp.2012.03.003
dc.identifier.citedreferenceSandholt, P., Moen, J., Opsvik, D., Denig, W., & Burke, W. ( 1993 ). Auroral event sequence at the dayside polar cap boundary: Signature of time‐varying solar wind‐magnetosphere‐ionosphere coupling. Advances in Space Research, 13 ( 4 ), 7 – 15. https://doi.org/https://doi.org/10.1016/0273-1177(93)90305-U
dc.identifier.citedreferenceShay, M. A., Drake, J. F., Swisdak, M., & Rogers, B. N. ( 2004 ). The scaling of embedded collisionless reconnection. Physics of Plasmas, 11, 2199 – 2213. https://doi.org/10.1063/1.1705650
dc.identifier.citedreferenceSkjaeveland, A., Moen, J., & Carlson, H. C. ( 2011 ). On the relationship between flux transfer events, temperature enhancements, and ion upflow events in the cusp ionosphere. Journal of Geophysical Research, 116, A10305. https://doi.org/10.1029/2011JA016480
dc.identifier.citedreferenceStrangeway, R. J., Ergun, R. E., Su, Y. J., Carlson, C. W., & Elphic, R. C. ( 2005 ). Factors controlling ionospheric outflows as observed at intermediate altitudes. Journal of Geophysical Research, 110, A03221. https://doi.org/10.1029/2004JA010829
dc.identifier.citedreferenceSu, Y., Caton, R., Horwitz, J., & Richards, P. ( 1999 ). Systematic modeling of soft‐electron precipitation effects on high‐latitude F region and topside ionospheric upflows. Journal of Geophysical Research, 104, 153 – 163.
dc.identifier.citedreferenceVarney, R. H., Wiltberger, M., Zhang, B., Lotko, W., & Lyon, J. ( 2016 ). Influence of ion outflow in coupled geospace simulations: 1. Physics‐based ion outflow model development and sensitivity study. Journal of Geophysical Research: Space Physics, 121, 9671 – 9687. https://doi.org/10.1002/2016JA022777
dc.identifier.citedreferenceWelling, D., André, M., Dandouras, I., Delcourt, D., Fazakerley, A., Fontaine, D., Foster, J., Ilie, R., Kistler, L., Lee, J. H., Liemohn, M. W., Slavin, J. A., Wang, C. P., Wiltberger, M., & Yau, A. ( 2015 ). The Earth: Plasma sources, losses, and transport processes. Space Science Reviews, 192 ( 1‐4 ), 145 – 208.
dc.identifier.citedreferenceWu, X. Y., Horwitz, J. L., Estep, G. M., Su, Y. J., Brown, D. G., Richards, P. G., & Wilson, G. R. ( 1999 ). Dynamic fluid‐kinetic (DyFK) modeling of auroral plasma outflow driven by soft electron precipitation and transverse ion heating. Journal of Geophysical Research, 104 ( A8 ), 17,263 – 17,275. https://doi.org/10.1029/1999JA900114
dc.identifier.citedreferenceYoung, D. T., Balsiger, H., & Geiss, J. ( 1982 ). Correlations of magnetospheric ion composition with geomagnetic and solar activity. Journal of Geophysical Research, 87 ( A11 ), 9077 – 9096. https://doi.org/10.1029/JA087iA11p09077
dc.identifier.citedreferenceZettergren, M., Lynch, K., Hampton, D., Nicolls, M., Wright, B., Conde, M., Moen, J., Lessard, M., Miceli, R., & Powell, S. ( 2014 ). Auroral ionospheric F region density cavity formation and evolution: MICA campaign results. Journal of Geophysical Research: Space Physics, 119, 3162 – 3178. https://doi.org/10.1002/2013JA019583
dc.identifier.citedreferenceZettergren, M., Semeter, J., Blelly, P. L., & Diaz, M. ( 2007 ). Optical Estimation of Auroral Ion Upflow: Theory. Journal of Geophysical Research, 112, A12310. https://doi.org/10.1029/2007JA012691
dc.identifier.citedreferenceBurleigh, M. R., Heale, C. J., Zettergren, M. D., & Snively, J. B. ( 2018 ). Modulation of low‐altitude ionospheric upflow by linear and nonlinear atmospheric gravity waves. Journal of Geophysical Research: Space Physics, 123, 7650 – 7667. https://doi.org/10.1029/2018JA025721
dc.identifier.citedreferenceBurleigh, M. R., & Zettergren, M. D. ( 2017 ). Anisotropic fluid modeling of ionospheric upflow: Effects of low‐altitude anisotropy and thermospheric winds. Journal of Geophysical Research: Space Physics, 122, 808 – 827. https://doi.org/10.1002/2016JA023329
dc.identifier.citedreferenceCaton, R., Horwitz, J. L., Richards, P. G., & Liu, C. ( 1996 ). Modeling of F‐region ionospheric upflows observed by EISCAT. Geophysical Research Letters, 23, 1537 – 1540. https://doi.org/10.1029/96GL01255
dc.identifier.citedreferenceChappell, C. R. ( 1988 ). The terrestrial plasma source: A new perspective in solar‐terrestrial processes from dynamics explorer. Reviews of Geophysics, 26 ( 2 ), 229 – 248. https://doi.org/10.1029/RG026i002p00229
dc.identifier.citedreferenceFasel, G. J. ( 1995 ). Dayside poleward moving auroral forms: A statistical study. Journal of Geophysical Research, 100 ( A7 ), 11,891 – 11,905. https://doi.org/10.1029/95JA00854
dc.identifier.citedreferenceFernandes, P. A., Lynch, K. A., Zettergren, M., Hampton, D. L., Bekkeng, T. A., Cohen, I. J., Conde, M., Fisher, L. E., Horak, P., Lessard, M. R., Miceli, R. J., Michell, R. G., Moen, J., & Powell, S. P. ( 2016 ). Measuring the seeds of ion outflow: Auroral sounding rocket observations of low‐altitude ion heating and circulation. Journal of Geophysical Research: Space Physics, 121, 1587 – 1607. https://doi.org/10.1002/2015JA021536
dc.identifier.citedreferenceFrederick‐Frost, K. M., Lynch, K. A., Kintner, P. M., Klatt, E., Lorentzen, D., Moen, J., Ogawa, Y., & Widholm, M. ( 2007 ). SERSIO: Svalbard EISCAT rocket study of ion outflows. Journal of Geophysical Research, 112, A08307. https://doi.org/10.1029/2006JA011942
dc.identifier.citedreferenceGloeckler, G., & Hamilton, D. C. ( 1987 ). Ampte ion composition results. Physica Scripta, 1987 ( T18 ), 73. https://doi.org/10.1088/0031-8949/1987/T18/009
dc.identifier.citedreferenceHamilton, D. C., Gloeckler, G., Ipavich, F. M., Stdemann, W., Wilken, B., & Kremser, G. ( 1988 ). Ring current development during the great geomagnetic storm of February 1986. Journal of Geophysical Research, 93 ( A12 ), 14,343 – 14,355. https://doi.org/10.1029/JA093iA12p14343
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.