Show simple item record

The Unmixing Problem: A Guide to Applying Single‐Cell RNA Sequencing to Bone

dc.contributor.authorGreenblatt, Matthew B
dc.contributor.authorOno, Noriaki
dc.contributor.authorAyturk, Ugur M
dc.contributor.authorDebnath, Shawon
dc.contributor.authorLalani, Sarfaraz
dc.date.accessioned2019-08-09T17:14:32Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-08-09T17:14:32Z
dc.date.issued2019-07
dc.identifier.citationGreenblatt, Matthew B; Ono, Noriaki; Ayturk, Ugur M; Debnath, Shawon; Lalani, Sarfaraz (2019). "The Unmixing Problem: A Guide to Applying Single‐Cell RNA Sequencing to Bone." Journal of Bone and Mineral Research 34(7): 1207-1219.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/150567
dc.description.abstractBone is composed of a complex mixture of many dynamic cell types. Flow cytometry and in vivo lineage tracing have offered early progress toward deconvoluting this heterogeneous mixture of cells into functionally well‐defined populations suitable for further studies. Single‐cell sequencing is poised as a key complementary technique to better understand the cellular basis of bone metabolism and development. However, single‐cell sequencing approaches still have important limitations, including transcriptional effects of cell isolation and sparse sampling of the transcriptome, that must be considered during experimental design and analysis to harness the power of this approach. Accounting for these limitations requires a deep knowledge of the tissue under study. Therefore, with the emergence of accessible tools for conducting and analyzing single‐cell RNA sequencing (scRNA‐seq) experiments, bone biologists will be ideal leaders in the application of scRNA‐seq to the skeleton. Here we provide an overview of the steps involved with a single‐cell sequencing analysis of bone, focusing on practical considerations needed for a successful study. © 2019 American Society for Bone and Mineral Research.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSINGLE‐CELL RNA SEQUENCING
dc.subject.otherOSTEOBLASTS
dc.subject.otherMESENCHYMAL STEM CELLS
dc.titleThe Unmixing Problem: A Guide to Applying Single‐Cell RNA Sequencing to Bone
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150567/1/jbmr3802_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150567/2/jbmr3802.pdf
dc.identifier.doi10.1002/jbmr.3802
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceYang L, Tsang KY, Tang HC, Chan D, Cheah KSE. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A. 2014; 111 ( 33 ): 12097 – 102.
dc.identifier.citedreferenceHashimshony T, Wagner F, Sher N, Yanai I. CEL‐Seq: single‐cell RNA‐Seq by multiplexed linear amplification. Cell Rep. 2012; 2 ( 3 ): 666 – 73.
dc.identifier.citedreferenceSacchetti B, Funari A, Michienzi S, et al. Self‐renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007; 131 ( 2 ): 324 – 36.
dc.identifier.citedreferenceBi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999; 22 ( 1 ): 85 – 9.
dc.identifier.citedreferenceYamashiro T, Wang X‐P, Li Z, et al. Possible roles of Runx1 and Sox9 in incipient intramembranous ossification. J Bone Miner Res. 2004; 19 ( 10 ): 1671 – 7.
dc.identifier.citedreferenceAkiyama H, Kim J‐E, Nakashima K, et al. Osteo‐chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A. 2005; 102 ( 41 ): 14665 – 70.
dc.identifier.citedreferenceNakashima K, Zhou X, Kunkel G, et al. The novel zinc finger‐containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002; 108 ( 1 ): 17 – 29.
dc.identifier.citedreferenceMoffatt P, Gaumond M‐H, Salois P, et al. Bril: a novel bone‐specific modulator of mineralization. J Bone Miner Res. 2008; 23 ( 9 ): 1497 – 508.
dc.identifier.citedreferenceCho T‐J, Lee K‐E, Lee S‐K, et al. A single recurrent mutation in the 5’‐UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet. 2012; 91 ( 2 ): 343 – 8.
dc.identifier.citedreferenceSemler O, Garbes L, Keupp K, et al. A mutation in the 5’‐UTR of IFITM5 creates an in‐frame start codon and causes autosomal‐dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012; 91 ( 2 ): 349 – 57.
dc.identifier.citedreferenceGrcevic D, Pejda S, Matthews BG, et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells. 2012; 30 ( 2 ): 187 – 96.
dc.identifier.citedreferenceKalajzic Z, Li H, Wang L‐P, et al. Use of an alpha‐smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone. 2008; 43 ( 3 ): 501 – 10.
dc.identifier.citedreferenceMatthews BG, Grcevic D, Wang L, et al. Analysis of αSMA‐labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. J Bone Miner Res. 2014; 29 ( 5 ): 1283 – 94.
dc.identifier.citedreferenceRosen V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 2009; 20 ( 5–6 ): 475 – 80.
dc.identifier.citedreferenceTsuji K, Bandyopadhyay A, Harfe BD, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006; 38 ( 12 ): 1424 – 9.
dc.identifier.citedreferenceSalazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016; 12 ( 4 ): 203 – 21.
dc.identifier.citedreferenceMcBride SH, McKenzie JA, Bedrick BS, et al. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells. PLoS One. 2014; 9 ( 5 ): e96862.
dc.identifier.citedreferenceSalazar VS, Capelo LP, Cantù C, et al. Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. Elife. 2019; 8.
dc.identifier.citedreferenceMarco E, Karp RL, Guo G, et al. Bifurcation analysis of single‐cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci U S A. 2014; 111 ( 52 ): E5643 – 50.
dc.identifier.citedreferenceShin J, Berg DA, Zhu Y, et al. Single‐cell RNA‐Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell. 2015; 17 ( 3 ): 360 – 72.
dc.identifier.citedreferenceSetty M, Tadmor MD, Reich‐Zeliger S, et al. Wishbone identifies bifurcating developmental trajectories from single‐cell data. Nat Biotechnol. 2016; 34 ( 6 ): 637 – 45.
dc.identifier.citedreferenceJi Z, Ji H. TSCAN: pseudo‐time reconstruction and evaluation in single‐cell RNA‐seq analysis. Nucleic Acids Res. 2016; 44 ( 13 ): e117.
dc.identifier.citedreferenceStreet K, Risso D, Fletcher RB, et al. Slingshot: cell lineage and pseudotime inference for single‐cell transcriptomics. BMC Genomics. 2018; 19 ( 1 ): 477.
dc.identifier.citedreferenceRizvi AH, Camara PG, Kandror EK, et al. Single‐cell topological RNA‐seq analysis reveals insights into cellular differentiation and development. Nat Biotechnol. 2017; 35 ( 6 ): 551 – 60.
dc.identifier.citedreferenceChang MK, Raggatt L‐J, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008; 181 ( 2 ): 1232 – 44.
dc.identifier.citedreferenceManolagas SC, Kronenberg HM. Reproducibility of results in preclinical studies: a perspective from the bone field. J Bone Miner Res. 2014; 29 ( 10 ): 2131 – 40.
dc.identifier.citedreferenceDebnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018; 562 ( 7725 ): 133 – 9.
dc.identifier.citedreferenceZhang J, Link DC. Targeting of mesenchymal stromal cells by cre‐recombinase transgenes commonly used to target osteoblast lineage cells. J Bone Miner Res. 2016; 31 ( 11 ): 2001 – 7.
dc.identifier.citedreferenceZelzer E, McLean W, Ng Y‐S, et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development. 2002; 129 ( 8 ): 1893 – 904.
dc.identifier.citedreferenceMizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature. 2018; 563 ( 7730 ): 254 – 8.
dc.identifier.citedreferenceOmatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipo‐osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010; 33 ( 3 ): 387 – 99.
dc.identifier.citedreferenceCooper MD. Exploring lymphocyte differentiation pathways. Immunol Rev. 2002; 185: 175 – 85.
dc.identifier.citedreferenceGood RA. Cellular immunology in a historical perspective. Immunol Rev. 2002; 185: 136 – 58.
dc.identifier.citedreferenceHerzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem. 2002; 48 ( 10 ): 1819 – 27.
dc.identifier.citedreferencePlasschaert LW, Žilionis R, Choo‐Wing R, et al. A single‐cell atlas of the airway epithelium reveals the CFTR‐rich pulmonary ionocyte. Nature. 2018; 560 ( 7718 ): 377 – 81.
dc.identifier.citedreferenceMontoro DT, Haber AL, Biton M, et al. A revised airway epithelial hierarchy includes CFTR‐expressing ionocytes. Nature. 2018; 560 ( 7718 ): 319 – 24.
dc.identifier.citedreferencePicelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. Full‐length RNA‐seq from single cells using Smart‐seq2. Nat Protoc. 2014; 9 ( 1 ): 171 – 81.
dc.identifier.citedreferenceJaitin DA, Kenigsberg E, Keren‐Shaul H, et al. Massively parallel single‐cell RNA‐seq for marker‐free decomposition of tissues into cell types. Science. 2014; 343 ( 6172 ): 776 – 9.
dc.identifier.citedreferenceHashimshony T, Senderovich N, Avital G, et al. CEL‐Seq2: sensitive highly‐multiplexed single‐cell RNA‐Seq. Genome Biol. 2016; 17: 77.
dc.identifier.citedreferenceZhang X, Li T, Liu F, et al. Comparative analysis of droplet‐based ultra‐high‐throughput single‐cell RNA‐seq systems. Mol Cell. 2019; 73 ( 1 ): 130 – 142.e5.
dc.identifier.citedreferenceKlein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single‐cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161 ( 5 ): 1187 – 201.
dc.identifier.citedreferenceMacosko EZ, Basu A, Satija R, et al. Highly parallel genome‐wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161 ( 5 ): 1202 – 14.
dc.identifier.citedreferenceZiegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single‐cell RNA sequencing methods. Mol Cell. 2017; 65 ( 4 ): 631 – 43.e4.
dc.identifier.citedreferenceShekhar K, Lapan SW, Whitney IE, et al. Comprehensive classification of retinal bipolar neurons by single‐cell transcriptomics. Cell. 2016; 166 ( 5 ): 1308 – 23.e30.
dc.identifier.citedreferenceZheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8: 14049.
dc.identifier.citedreferenceChan CKF, Gulati GS, Sinha R, et al. Identification of the human skeletal stem cell. Cell. 2018; 175 ( 1 ): 43 – 56.e21.
dc.identifier.citedreferenceTakahashi A, Nagata M, Gupta A, et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc Natl Acad Sci U S A. 2019; 116 ( 2 ): 575 – 80.
dc.identifier.citedreferenceStoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017; 14 ( 9 ): 865 – 8.
dc.identifier.citedreferenceMachado L, Esteves de Lima J, Fabre O, et al. In situ fixation redefines quiescence and early activation of skeletal muscle stem cells. Cell Rep. 2017; 21 ( 7 ): 1982 – 93.
dc.identifier.citedreferencevan Velthoven CTJ, de Morree A, Egner IM, Brett JO, Rando TA. Transcriptional profiling of quiescent muscle stem cells in vivo. Cell Rep. 2017; 21 ( 7 ): 1994 – 2004.
dc.identifier.citedreferencevan den Brink SC, Sage F, Vértesy Á, et al. Single‐cell sequencing reveals dissociation‐induced gene expression in tissue subpopulations. Nat Methods. 2017; 14 ( 10 ): 935 – 6.
dc.identifier.citedreferenceTanaka K‐I, Xue Y, Nguyen‐Yamamoto L, et al. FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci U S A. 2018; 115 ( 16 ): E3759 – 68.
dc.identifier.citedreferenceShah KM, Stern MM, Stern AR, Pathak JL, Bravenboer N, Bakker AD. Osteocyte isolation and culture methods. Bonekey Rep. 2016; 5: 838.
dc.identifier.citedreferenceBuenrostro JD, Wu B, Litzenburger UM, et al. Single‐cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523 ( 7561 ): 486 – 90.
dc.identifier.citedreferenceCao J, Cusanovich DA, Ramani V, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science. 2018; 361 ( 6409 ): 1380 – 5.
dc.identifier.citedreferenceLake BB, Ai R, Kaeser GE, et al. Neuronal subtypes and diversity revealed by single‐nucleus RNA sequencing of the human brain. Science. 2016; 352 ( 6293 ): 1586 – 90.
dc.identifier.citedreferenceHabib N, Li Y, Heidenreich M, et al. Div‐Seq: single‐nucleus RNA‐Seq reveals dynamics of rare adult newborn neurons. Science. 2016; 353 ( 6302 ): 925 – 8.
dc.identifier.citedreferenceHabib N, Avraham‐Davidi I, Basu A, et al. Massively parallel single‐nucleus RNA‐seq with DroNc‐seq. Nat Methods. 2017; 14 ( 10 ): 955 – 8.
dc.identifier.citedreferenceGrindberg RV, Yee‐Greenbaum JL, McConnell MJ, et al. RNA‐sequencing from single nuclei. Proc Natl Acad Sci U S A. 2013; 110 ( 49 ): 19802 – 7.
dc.identifier.citedreferenceRosenberg AB, Roco CM, Muscat RA, et al. Single‐cell profiling of the developing mouse brain and spinal cord with split‐pool barcoding. Science. 2018; 360 ( 6385 ): 176 – 82.
dc.identifier.citedreferenceCao J, Packer JS, Ramani V, et al. Comprehensive single‐cell transcriptional profiling of a multicellular organism. Science. 2017; 357 ( 6352 ): 661 – 7.
dc.identifier.citedreferenceCao J, Spielmann M, Qiu X, et al. The single‐cell transcriptional landscape of mammalian organogenesis. Nature. 2019; 566 ( 7745 ): 496 – 502.
dc.identifier.citedreferenceTabula Muris Consortium, et al. Single‐cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018; 562 ( 7727 ): 367 – 72.
dc.identifier.citedreferenceTikhonova AN, Dolgalev I, Hu H, et al. The bone marrow microenvironment at single‐cell resolution. Nature. 2019; 569 ( 7755 ): 222 – 8.
dc.identifier.citedreferenceRostom R, Svensson V, Teichmann SA, Kar G. Computational approaches for interpreting scRNA‐seq data. FEBS Lett. 2017; 591 ( 15 ): 2213 – 25.
dc.identifier.citedreferenceZappia L, Phipson B, Oshlack A. Exploring the single‐cell RNA‐seq analysis landscape with the scRNA‐tools database. PLoS Comput Biol. 2018; 14 ( 6 ): e1006245.
dc.identifier.citedreferenceFreytag S, Tian L, Lönnstedt I, Ng M, Bahlo M. Comparison of clustering tools in R for medium‐sized 10x Genomics single‐cell RNA‐sequencing data. F1000Research. 2018; 7: 1297.
dc.identifier.citedreferencevan der Maaten LJP, Hinton GE. Visualizing high‐dimensional data using t‐SNE. J Mach Learn Res. 2008; 9: 2579 – 605.
dc.identifier.citedreferenceBecht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single‐cell data using UMAP. Nat. Biotechnol. E‐pub 2018. https://doi.org/10.1038/nbt.4314.
dc.identifier.citedreferenceWattenberg M, Viégas F, Johnson I How to use t‐SNE effectively [Internet]. Distill. 2016. Available at: https://distill.pub/2016/misread‐tsne/
dc.identifier.citedreferenceAzizi E, Carr AJ, Plitas G, et al. Single‐cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 2018; 174 ( 5 ): 1293 – 1308.e36.
dc.identifier.citedreferenceBhagwat N, Dulmage K, Pletcher CH, et al. An integrated flow cytometry‐based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci Rep. 2018; 8 ( 1 ): 5035.
dc.identifier.citedreferenceRichardson GM, Lannigan J, Macara IG. Does FACS perturb gene expression? Cytometry A. 2015; 87 ( 2 ): 166 – 75.
dc.identifier.citedreferenceBeliakova‐Bethell N, Massanella M, White C, et al. The effect of cell subset isolation method on gene expression in leukocytes. Cytometry A. 2014; 85 ( 1 ): 94 – 104.
dc.identifier.citedreferenceButler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single‐cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018; 36 ( 5 ): 411 – 20.
dc.identifier.citedreferenceGrün D, Lyubimova A, Kester L, et al. Single‐cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015; 525 ( 7568 ): 251 – 5.
dc.identifier.citedreferenceGrün D, Muraro MJ, Boisset J‐C, et al. De novo prediction of stem cell identity using single‐cell transcriptome data. Cell Stem Cell. 2016; 19 ( 2 ): 266 – 77.
dc.identifier.citedreferenceLa Manno G, Soldatov R, Zeisel A, et al. RNA velocity of single cells. Nature. 2018; 560 ( 7719 ): 494 – 8.
dc.identifier.citedreferenceTrapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32 ( 4 ): 381 – 6.
dc.identifier.citedreferenceQiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single‐cell trajectories. Nat Methods. 2017; 14 ( 10 ): 979 – 82.
dc.identifier.citedreferenceKosti I, Jain N, Aran D, Butte AJ, Sirota M. Cross‐tissue analysis of gene and protein expression in normal and cancer tissues. Sci Rep. 2016; 6: 24799.
dc.identifier.citedreferencePerl K, Ushakov K, Pozniak Y, et al. Reduced changes in protein compared to mRNA levels across non‐proliferating tissues. BMC Genomics. 2017; 18 ( 1 ): 305.
dc.identifier.citedreferenceSuter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F. Mammalian genes are transcribed with widely different bursting kinetics. Science. 2011; 332 ( 6028 ): 472 – 4.
dc.identifier.citedreferenceBahar Halpern K, Tanami S, Landen S, et al. Bursty gene expression in the intact mammalian liver. Mol Cell. 2015; 58 ( 1 ): 147 – 56.
dc.identifier.citedreferenceChubb JR, Trcek T, Shenoy SM, Singer RH. Transcriptional pulsing of a developmental gene. Curr Biol. 2006; 16 ( 10 ): 1018 – 25.
dc.identifier.citedreferenceSatija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single‐cell gene expression data. Nat Biotechnol. 2015; 33 ( 5 ): 495 – 502.
dc.identifier.citedreferenceStrell C, Hilscher MM, Laxman N, et al. Placing RNA in context and space—methods for spatially resolved transcriptomics. FEBS J. 2019; 286 ( 8 ): 1468 – 81.
dc.identifier.citedreferenceChen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015; 348 ( 6233 ): aaa6090.
dc.identifier.citedreferenceLee JH, Daugharthy ER, Scheiman J, et al. Highly multiplexed subcellular RNA sequencing in situ. Science. 2014; 343 ( 6177 ): 1360 – 3.
dc.identifier.citedreferenceStåhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 353 ( 6294 ): 78 – 82.
dc.identifier.citedreferenceWang X, Allen WE, Wright MA, et al. Three‐dimensional intact‐tissue sequencing of single‐cell transcriptional states. Science. 2018; 361 ( 6400 ).
dc.identifier.citedreferenceRodriques SG, Stickels RR, Goeva A, et al. Slide‐seq: a scalable technology for measuring genome‐wide expression at high spatial resolution. Science. 2019; 363 ( 6434 ): 1463 – 7.
dc.identifier.citedreferenceKawamoto T, Kawamoto K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamot’s film method (2012). Methods Mol Biol. 2014; 1130: 149 – 64.
dc.identifier.citedreferenceChan CKF, Seo EY, Chen JY, et al. Identification and specification of the mouse skeletal stem cell. Cell. 2015; 160 ( 1–2 ): 285 – 98.
dc.identifier.citedreferenceAbad V, Meyers JL, Weise M, et al. The role of the resting zone in growth plate chondrogenesis. Endocrinology. 2002; 143 ( 5 ): 1851 – 7.
dc.identifier.citedreferenceRamsköld D, Luo S, Wang Y‐C, et al. Full‐length mRNA‐Seq from single‐cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012; 30 ( 8 ): 777 – 82.
dc.identifier.citedreferenceZhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014; 10 ( 12 ): e1004820.
dc.identifier.citedreferenceOno N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014; 16 ( 12 ): 1157 – 67.
dc.identifier.citedreferenceMizuhashi K, Nagata M, Matsushita Y, Ono W, Ono N. Growth plate borderline chondrocytes behave as transient mesenchymal precursor cells. Bone Miner Res. E‐pub 2019. https://doi.org/10.1002/jbmr.3719.
dc.identifier.citedreferenceZhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin‐receptor‐expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014; 15 ( 2 ): 154 – 68.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.