Show simple item record

Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niñoâ induced drought

dc.contributor.authorBarros, Fernanda de V.
dc.contributor.authorBittencourt, Paulo R. L.
dc.contributor.authorBrum, Mauro
dc.contributor.authorRestrepo‐coupe, Natalia
dc.contributor.authorPereira, Luciano
dc.contributor.authorTeodoro, Grazielle S.
dc.contributor.authorSaleska, Scott R.
dc.contributor.authorBorma, Laura S.
dc.contributor.authorChristoffersen, Bradley O.
dc.contributor.authorPenha, Deliane
dc.contributor.authorAlves, Luciana F.
dc.contributor.authorLima, Adriano J. N.
dc.contributor.authorCarneiro, Vilany M. C.
dc.contributor.authorGentine, Pierre
dc.contributor.authorLee, Jung‐eun
dc.contributor.authorAragão, Luiz E. O. C.
dc.contributor.authorIvanov, Valeriy
dc.contributor.authorLeal, Leila S. M.
dc.contributor.authorAraujo, Alessandro C.
dc.contributor.authorOliveira, Rafael S.
dc.date.accessioned2019-08-09T17:15:44Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-08-09T17:15:44Z
dc.date.issued2019-08
dc.identifier.citationBarros, Fernanda de V.; Bittencourt, Paulo R. L.; Brum, Mauro; Restrepo‐coupe, Natalia ; Pereira, Luciano; Teodoro, Grazielle S.; Saleska, Scott R.; Borma, Laura S.; Christoffersen, Bradley O.; Penha, Deliane; Alves, Luciana F.; Lima, Adriano J. N.; Carneiro, Vilany M. C.; Gentine, Pierre; Lee, Jung‐eun ; Aragão, Luiz E. O. C. ; Ivanov, Valeriy; Leal, Leila S. M.; Araujo, Alessandro C.; Oliveira, Rafael S. (2019). "Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niñoâ induced drought." New Phytologist 223(3): 1253-1266.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/150610
dc.publisherHarvard University, Cambridge, MA, USA
dc.publisherWiley Periodicals, Inc.
dc.subject.otherplant functional diversity
dc.subject.other2015â ENSO
dc.subject.otherAmazon tropical forest
dc.subject.otherdrought
dc.subject.otherembolism resistance
dc.subject.otherhydraulic traits
dc.titleHydraulic traits explain differential responses of Amazonian forests to the 2015 El Niñoâ induced drought
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150610/1/nph15909.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150610/2/nph15909_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150610/3/nph15909-sup-0001-SupInfo.pdf
dc.identifier.doi10.1111/nph.15909
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceOliveira RS, Dawson TE, Burgess SSO, Nepstad DC. 2005. Hydraulic redistribution in three Amazonian trees. Oecologia 145: 354 â 363.
dc.identifier.citedreferenceHutyra LR, Munger JW, Nobre CA, Saleska SR, Vieira SA, Wofsy SC. 2005. Climatic variability and vegetation vulnerability in Amazônia. Geophysical Research Letters 32: L24712.
dc.identifier.citedreferenceIvanov VY, Hutyra LR, Wofsy SC, Munger JW, Saleska SR, Oliveira RC Jr, Camargo PB. 2012. Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resources Research 48: W12507.
dc.identifier.citedreferenceJiménezâ Muñoz JC, Mattar C, Barichivich J, Santamaríaâ Artigas A, Takahashi K, Malhi Y, Sobrino JA, van der Schrier G. 2016. Recordâ breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015â 2016. Scientific Reports 6: 33130.
dc.identifier.citedreferenceJoetzjer E, Delire C, Douville H, Ciais P, Decharme B, Fisher R, Christoffersen B, Calvet JC, da Costa ACL, Ferreira L et al. 2014. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models. Geoscientific Model Development 7: 2933 â 2950.
dc.identifier.citedreferenceKonings AG, Williams AP, Gentine P. 2017. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nature Geoscience 7: 2193 â 2197.
dc.identifier.citedreferenceLevine NM, Zhang K, Longo M, Baccini A, Phillips OL, Lewis SL, Alvarezâ Dàvila E, Andrade ACG, Brienen RJW, Erwin TL et al. 2016. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences, USA 113: 793 â 797.
dc.identifier.citedreferenceLin YS, Medlyn BE, Duursma RA, Prentice IC, Wang H, Baig S, Eamus D, Dios VR, Mitchell P, Ellsworth DS et al. 2015. Optimal stomatal behavior around the world. Nature Climate Change 5: 459 â 464.
dc.identifier.citedreferenceLintner BR, Biasutti M, Diffenbaugh NS, Lee Jâ E, Niznik MJ, Findell KL. 2012. Amplification of wet and dry month occurrence over tropical land regions in response to global warming. Journal of Geophysical Research 117: D11106.
dc.identifier.citedreferenceMalhi Y, Aragão LE, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P. 2009. Exploring the likelihood and mechanism of a climateâ changeâ induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, USA 106: 20610 â 20615.
dc.identifier.citedreferenceManoli G, Ivanov VY, Fatichi S. 2018. Dryâ season greening and water stress in Amazonia: the role of modeling leaf phenology. Journal of Geophysical Research 123: 1909 â 1926.
dc.identifier.citedreferenceMarkesteijn L, Poorter L, Bongers F, Paz H, Sack L. 2011. Hydraulics and life history of tropical dry forest tree species: coordination of speciesâ drought and shade tolerance. New Phytologist 191: 480 â 495.
dc.identifier.citedreferenceMcDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG et al. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist 178: 719 â 739.
dc.identifier.citedreferenceMedlyn BE, De Kauwe MG, Duursma RA. 2016. New developments in the effort to model ecosystems under water stress. New Phytologist 212: 5 â 7.
dc.identifier.citedreferenceMeinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR. 2009. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology 23: 922 â 930.
dc.identifier.citedreferenceNepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Silva ED, Stone TA, Trumbore SE, Vieira S. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372: 666 â 669.
dc.identifier.citedreferenceNepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G. 2007. Mortality of large trees and lianas following experimental drought in an Amazon Forest. Ecology 88: 2259 â 2269.
dc.identifier.citedreferenceOliveira RS, Costa FRC, Baalen E, Jonge A, Bittencourt PR, Almanza Y, Barros FV, Cordoba EC, Fagundes MV, Garcia S et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydroâ topographic gradients. New Phytologist 221: 1457 â 1465.
dc.identifier.citedreferenceOyama MD, Nobre CA. 2003. A new climateâ vegetation equilibrium state for Tropical South America. Geophysical Research Letters 30: 2199.
dc.identifier.citedreferencePammenter NW, Vander Willigen C. 1998. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology 18: 589 â 593.
dc.identifier.citedreferencePanisset JS, Libonati R, Gouveia CMP, Machadoâ Silva F, França DA, França JRA, Peres LF. 2018. Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. International Journal of Climatology 38: 1096 â 1104.
dc.identifier.citedreferenceParrotta JA, Francis JK, DeAlmeida RR. 1995. Trees of the Tapajo’s: A photographic field guide. Gen. Tech. Rep. IITFâ 1, US Department of Agricculture, Rio Piedras, Puerto Rico.
dc.identifier.citedreferencePereira L, Bittencourt PRL, Oliveira RS, Junior MBM, Barros FV, Ribeiro RV, Mazzafera P. 2016. Plant pneumatics: stem air flow is related to embolism â new perspectives on methods in plant hydraulics. New Phytologist 211: 357 â 370.
dc.identifier.citedreferencePhillips OL, van der Heijden G, Lewis SL, Lópezâ González G, Aragão LEOC, Lloyd J, Malhi Y, Monteagudo A, Almeida S, Dávila EA et al. 2010. Drought mortality relationships for tropical forests. New Phytologist 187: 631 â 646.
dc.identifier.citedreferencePockman WT, Sperry JS. 2000. Vulnerability to xylem cavitations and the distribution of Sonoran Desert vegetation. American Journal of Botany 87: 1287 â 1299.
dc.identifier.citedreferencePyle EH, Santoni GW, Nascimento HEM, Hutyra LR, Vieira S, Curran DJ, van Haren J, Saleska SR, Chow VY, Camargo PB. 2008. Dynamics of carbon, biomass, and structure in two Amazonian forests. Journal of Geophysical Research: Biogeosciences 114: 1 â 20.
dc.identifier.citedreferenceR Core Team. 2018. R: a language and environment for statistical computing, v.3.5. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/
dc.identifier.citedreferenceRestrepoâ Coupe N, Levine NM, Christoffersen BO, Albert LP, Wu J, Costa MH, Galbraith D, Imbuzeiro H, Martins G, Araujo AC et al. 2016. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A dataâ model intercomparison. Global Change Biology 23: 191 â 208.
dc.identifier.citedreferenceRowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS et al. 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528: 119 â 122.
dc.identifier.citedreferenceSakschewski B, von Bloh W, Boit A, Poorter L, Peñaâ Claros M, Heinke J, Joshi J, Thonicke K. 2016. Resilience of Amazon forests emerges from plant trait diversity. Nature Climate Change 6: 1032 â 1036.
dc.identifier.citedreferenceSchneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671 â 675.
dc.identifier.citedreferenceScholz A, Klepsch M, Karimi Z, Jansen S. 2013. How to quantify conduits in wood? Frontiers in Plant Science 4: 56.
dc.identifier.citedreferenceSperry JS, Donnelly JR, Tyree MT. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment 11: 35 â 40.
dc.identifier.citedreferenceSperry JS, Hacke UG, Oren R, Comstock JP. 2002. Water deficits and hydraulic limits to leaf water supply. Plant, Cell & Environment 25: 251 â 263.
dc.identifier.citedreferenceSperry JS, Love DM. 2015. What plant hydraulics can tell us about responses to climateâ change droughts. New Phytologist 207: 14 â 27.
dc.identifier.citedreferenceTer Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomao RP, Guevara JE, Philips OL, Castilho CV, Magnusson WE, Molino JF et al. 2013. Hyperdominance in the Amazonian Tree Flora. Science 342: 1243092.
dc.identifier.citedreferenceTrueba S, Pouteau R, Lens F, Feild TS, Isnard S, Olson ME, Delzon S. 2017. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell & Environment 40: 277 â 289.
dc.identifier.citedreferenceTyree MT, Sperry JS. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology 40: 19 â 38.
dc.identifier.citedreferenceVieira S, de Camargo PB, Selhorst D, da Silva R, Hutyra L, Chambers JQ, Brown IF, Higuchi N, dos Santos J, Wofsy SC et al. 2004. Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia 140: 468 â 479.
dc.identifier.citedreferenceWilliamson GB, Laurance WF, Oliveira AA, Delamônica P, Gascon C, Lovejoy TE, Pohl L. 2000. Amazonian tree mortality during the 1997 El Niño drought. Conservation Biology 14: 1538 â 1542.
dc.identifier.citedreferenceXu X, Medvigy D, Powers JS, Becknell JM, Guan K. 2016. Diversity in plant hydraulic traits explains seasonal and interâ annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytologist 212: 80 â 95.
dc.identifier.citedreferenceAnderegg WRL, Flint A, Huang C, Flint L, Berry JA, Davis FW, Sperry JS, Field CB. 2015. Tree mortality predicted from droughtâ induced vascular damage. Nature Geoscience 8: 367 â 371.
dc.identifier.citedreferenceAnderegg WR, Klein T, Bartlett M, Sack L, Pellegrini AF, Choat B, Jansen S. 2016. Metaâ analysis reveals that hydraulic traits explain crossâ species patterns of droughtâ induced tree mortality across the globe. Proceedings of the National Academy of Sciences, USA 113: 5024 â 5029.
dc.identifier.citedreferenceAnderegg WRL, Konings AG, Trugman AT, Yu K, Bowling DR, Gabbitas R, Karp DS, Pacala S, Sperry JS, Sulman BN et al. 2018. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561: 538 â 541.
dc.identifier.citedreferenceAragão LEOC, Malhi Y, Romanâ Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE. 2007. Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters 34: L07701.
dc.identifier.citedreferenceAraujo AC, Nobre AD, Kruijt B, Elbers JA, Dallarosa R, Stefani P, von Randow C, Manzi O, Manzi AO, Culf AD et al. 2002. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site. Journal of Geophysical Research 107: 8090.
dc.identifier.citedreferenceBrienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopezâ Gonzalez G, Monteagudoâ Menzoza A, Malhi Y, Martinez RA et al. 2015. Longâ term decline of the Amazon carbon sink. Nature 519: 344 â 348.
dc.identifier.citedreferenceBrodribb TJ. 2017. Progressing from â functionalâ to mechanistic traits. New Phytologist 215: 9 â 11.
dc.identifier.citedreferenceBrum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragão LEOC, Barros F et al. 2018. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology 107: 318 â 333.
dc.identifier.citedreferenceCarneiro VMC. 2004. Composição florística e análise estrutural da floresta primária de terra firme na bacia do Rio Cuieras, Manaus â AM. Masters Thesis, Universidade Federal do Amazonas, Manaus â AM, Brazil.
dc.identifier.citedreferenceChoat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci GS, Field TS, Gleason SM, Hacke UG et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752 â 755.
dc.identifier.citedreferenceCiemer C, Boers N, Hirota M, Kurths J, Mullerâ Hansen F, Oliveira RS, Winkelmann R. 2019. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nature Geoscience 12: 174 â 179.
dc.identifier.citedreferenceCollatz GJ, Ball JT, Grivet C, Berry JA. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54: 107 â 136.
dc.identifier.citedreferenceCosme LHM, Schietti J, Costa FRC, Oliveira RS. 2017. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist 215: 113 â 125.
dc.identifier.citedreferenceCox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD. 2004. Amazonian forest dieback under climateâ carbon cycle projections for the 21 st century. Theoretical and Applied Climatology 78: 137 â 156.
dc.identifier.citedreferenceCox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM. 2013. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494: 341 â 344.
dc.identifier.citedreferenceDa Costa CL, Galbraith D, Almeida S, Tanaka Portela BT, da Costa M, de Athaydes SJ, Braga AP, Gonçalves PHL, Oliveira AAR, Fisher R et al. 2010. Effect of seven years of experimental drought on the aboveground biomass storage of an eastern Amazonian rainforest. New Phytologist 187: 579 â 591.
dc.identifier.citedreferenceDavidson E, Lefebvre PA, Brando PM, Ray DM, Trumbore SE, Solorzano LA, Ferreira JN, Bustamante MMC, Nepstad DC. 2011. Carbon inputs and water uptake in deep soils of an eastern Amazon forest. Forest Science 57: 51 â 58.
dc.identifier.citedreferenceDe Gonçalves LGG, Borak JS, Costa MH, Saleska SR, Baker I, Restrepoâ Coupe N, Muza MN, Poulter B, Verbeeck H, Fisher JB et al. 2013. Overview of the largeâ scale biosphereâ atmosphere experiment in Amazonia data model intercomparison project (LBAâ DMIP). Agricultural and Forest Meteorology 182â 183: 111 â 127.
dc.identifier.citedreferenceLongo M. 2013. Amazon forest response to changes in rainfall regime: results from an individualâ based dynamic vegetation model. PhD Thesis: Harvard University, Cambridge, MA, USA.
dc.identifier.citedreferenceEller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros FV, Friend AD, Mencuccini M, Sitch S, Cox P. 2018. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 373: 20170315.
dc.identifier.citedreferenceEngelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447: 80 â 82.
dc.identifier.citedreferenceEngelbrecht BMJ, Kursar TA, Tyree MT. 2005. Drought effects on seedling survival in a tropical moist forest. Trees 19: 312 â 321.
dc.identifier.citedreferenceEsquivelâ Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Loyd J, Monteagudoâ Mendoza A, Arroyo L, à lvarezâ Dávila E, et al. 2018. Compositional response of Amazon forests to climate change. Global Change Biology 25: 39 â 56.
dc.identifier.citedreferenceEsquivelâ Muelbert A, Baker TR, Dexter KG, Lewis SL, ter Steege H, Lopezâ Gonzalez G, Mendoza AB, Brienen R, Feldpausch TR, Pitman N et al. 2017. Seasonal drought limits tree species across the Neotropics. Ecography 40: 618 â 629.
dc.identifier.citedreferenceFauset S, Johnson MO, Gloor M, Baker TR, Monteagudo A, Brienen RJW, Feldpausch TR, Lopezâ Gonzalez G, Malhi Y, ter Steege H et al. 2015. Species contributions to stems, biomass and productivity in Amazon inventory plots. Hyperdominance in Amazonian forest carbon cycling. Nature Communications 6: 6857.
dc.identifier.citedreferenceFisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM et al. 2015. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development 8: 3593 â 3619.
dc.identifier.citedreferenceFriedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadulee P, Doneyf S, Ebyg M, Fungh I et al. 2006. Climateâ carbon cycle feedback analysis: results from the (CMIP)â Mâ 4 model intercomparison. Journal of Climate 19: 3337 â 3353.
dc.identifier.citedreferenceFu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakraborty S, Fernandes K, Liebmann B, Fisher R et al. 2013. Increased dryâ season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences, USA 110: 18110 â 18115.
dc.identifier.citedreferenceGarnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Gérard L, Blanchard A, Aubry D, Neill C et al. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630 â 2637.
dc.identifier.citedreferenceGentine P, Guérin M, Uriarte M, Mcdowell NG, Pockman WT. 2016. An allometryâ based model of the survival strategies of hydraulic failure and carbon starvation. Ecohydrology 9: 529 â 546.
dc.identifier.citedreferencevan Genuchten MT. 1980. A closedâ form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892 â 898.
dc.identifier.citedreferenceGood P, Jones C, Lowe J, Betts R, Booth B. 2011. Quantifying environmental drivers of future tropical forest extent. Journal of Climate 24: 1337 â 1349.
dc.identifier.citedreferenceGrant PR, Grant BR, Huey RB, Johnson MTJ, Knoll AH, Schmitt J. 2017. Evolution caused by extreme events. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 372: 20160146.
dc.identifier.citedreferenceHuntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB et al. 2013. Simulated resilience of tropical rainforests to CO 2 â induced climate change. Nature Geoscience 6: 268 â 273.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.