Show simple item record

Knockdown of Notch1 inhibits nasopharyngeal carcinoma cell growth and metastasis via downregulation of CCL2, CXCL16, and uPA

dc.contributor.authorGuo, Huajiao
dc.contributor.authorWang, Fuhao
dc.contributor.authorDiao, Yuwen
dc.contributor.authorZhang, Zhe
dc.contributor.authorChen, Qiuyan
dc.contributor.authorQian, Chao‐nan
dc.contributor.authorKeller, Evan T.
dc.contributor.authorZhang, Jian
dc.contributor.authorLu, Yi
dc.date.accessioned2019-09-30T15:29:53Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-09-30T15:29:53Z
dc.date.issued2019-10
dc.identifier.citationGuo, Huajiao; Wang, Fuhao; Diao, Yuwen; Zhang, Zhe; Chen, Qiuyan; Qian, Chao‐nan ; Keller, Evan T.; Zhang, Jian; Lu, Yi (2019). "Knockdown of Notch1 inhibits nasopharyngeal carcinoma cell growth and metastasis via downregulation of CCL2, CXCL16, and uPA." Molecular Carcinogenesis 58(10): 1886-1896.
dc.identifier.issn0899-1987
dc.identifier.issn1098-2744
dc.identifier.urihttps://hdl.handle.net/2027.42/151248
dc.description.abstractNotch pathway is a highly conserved cell signaling system that plays very important roles in controlling multiple cell differentiation processes during embryonic and adult life. Multiple lines of evidence support the oncogenic role of Notch signaling in several human solid cancers; however, the pleiotropic effects and molecular mechanisms of Notch signaling inhibition on nasopharyngeal carcinoma (NPC) remain unclear. In this study, we evaluated Notch1 expression in NPC cell lines (CNE1, CNE2, SUNE1, HONE1, and HK1) by real-time quantitative PCR and Western blot analysis, and we found that CNE1 and CNE2 cells expressed a higher level of Notch1 compared with HONE1, SUNE1, and HK1 cells. Then Notch1 expression was specifically knocked down in CNE1 and CNE2 cells by Notch1 short hairpin RNA (shRNA). In Notch1 knockdown cells, cell proliferation, migration, and invasion were significantly inhibited. The epithelial-mesenchymal transition of tumor cells was reversed in Notch1-shRNA-transfected cells, accompanied by epithelioid-like morphology changes, increased protein levels of E-cadherin, and decreased expression of vimentin. In addition, knockdown of Notch1 markedly inhibited the expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and chemokines C-C motif chemokine ligand 2 and C-X-C motif chemokine ligand 16, indicating that these factors are downstream targets of Notch1. Furthermore, deleting uPA expression had similar effects as Notch1. Finally, knockdown of Notch1 significantly diminished CNE1 cell growth in a murine model concomitant with inhibition of cell proliferation and induction of apoptosis. These results suggest that Notch1 may become a novel therapeutic target for the clinical treatment of NPC.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCCL2
dc.subject.otherEMT
dc.subject.othernasopharyngeal carcinoma
dc.subject.otherNotch1
dc.subject.otheruPA
dc.titleKnockdown of Notch1 inhibits nasopharyngeal carcinoma cell growth and metastasis via downregulation of CCL2, CXCL16, and uPA
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151248/1/mc23082_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151248/2/mc23082.pdf
dc.identifier.doi10.1002/mc.23082
dc.identifier.sourceMolecular Carcinogenesis
dc.identifier.citedreferenceFan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006; 66: 7445 - 7452.
dc.identifier.citedreferenceSriuranpong V, Borges MW, Ravi RK, et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 2001; 61: 3200 - 3205.
dc.identifier.citedreferenceLi J, Li Q, Lin L, et al. Targeting the Notch1 oncogene by miR-139-5p inhibits glioma metastasis and epithelial-mesenchymal transition (EMT). BMC Neurol. 2018; 18: 133.
dc.identifier.citedreferenceTeng ZP, Ooka T, Huang DP, et al. Detection of Epstein-Barr virus DNA in well and poorly differentiated nasopharyngeal carcinoma cell lines. Virus Genes. 1996; 13: 53 - 60.
dc.identifier.citedreferenceYan Min, Zhang Yan, et al. IKKa restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat Commun. 2014; 5: 3661. https://doi.org/10.1038/ncomms4661.
dc.identifier.citedreferenceLu Y, Cai Z, Galson DL, et al. Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate. 2006; 66: 1311 - 1318.
dc.identifier.citedreferenceLu Y, Wang J, Xu Y, et al. CXCL16 functions as a novel chemotactic factor for prostate cancer cells in vitro. Mol Cancer Res. 2008; 6: 546 - 554.
dc.identifier.citedreferenceLu Y, Cai Z, Xiao G, et al. CCR2 expression correlates with prostate cancer progression. J Cell Biochem. 2007; 101: 676 - 685.
dc.identifier.citedreferenceLu Y, Xiao G, Galson DL, et al. PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasion in vitro. Int J Cancer. 2007; 121: 724 - 733.
dc.identifier.citedreferenceLu Y, Nie D, Witt WT, et al. Expression of the fat-1 gene diminishes prostate cancer growth in vivo through enhancing apoptosis and inhibiting GSK-3 beta phosphorylation. Mol Cancer Ther. 2008; 7: 3203 - 3211.
dc.identifier.citedreferenceZhang J, Sud S, Mizutani K, et al. Activation of urokinase plasminogen activator and its receptor axis is essential for macrophage infiltration in a prostate cancer mouse model. Neoplasia. 2011; 13: 23 - 30.
dc.identifier.citedreferenceSengupta S, den Boon JA, Chen IH, et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 2006; 66: 7999 - 8006.
dc.identifier.citedreferenceLu Y, Cai Z, Xiao G, et al. Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res. 2007; 67: 3646 - 3653.
dc.identifier.citedreferenceYu S, Zhang R, Liu F, et al. Down-regulation of Notch signaling by a gamma-secretase inhibitor enhances the radiosensitivity of nasopharyngeal carcinoma cells. Oncol Rep. 2011; 26: 1323 - 1328.
dc.identifier.citedreferenceChen SM, Liu JP, Zhou JX, et al. Suppression of the notch signaling pathway by gamma-secretase inhibitor GSI inhibits human nasopharyngeal carcinoma cell proliferation. Cancer Lett. 2011; 306: 76 - 84.
dc.identifier.citedreferenceLu Y, Chen Q, Corey E, et al. Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis. 2009; 26: 161 - 169.
dc.identifier.citedreferenceBin Hafeez B, Adhami VM, Asim M, et al. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res. 2009; 15: 452 - 459.
dc.identifier.citedreferenceThiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139: 871 - 890.
dc.identifier.citedreferenceMarambaud P, Shioi J, Serban G, et al. A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. 2002; 21: 1948 - 1956.
dc.identifier.citedreferenceKalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119: 1420 - 1428.
dc.identifier.citedreferencePeinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004; 48: 365 - 375.
dc.identifier.citedreferenceBolos V, Mira E, Martinez-Poveda B, et al. Notch activation stimulates migration of breast cancer cells and promotes tumor growth. Breast Cancer Res. 2013; 15: R54.
dc.identifier.citedreferenceLeBeau AM, Duriseti S, Murphy ST, et al. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer. Cancer Res. 2013; 73: 2070 - 2081.
dc.identifier.citedreferenceNi X, Long J, Cen P, et al. Pancreatic cancer tumour initiating cells: the molecular regulation and therapeutic values. J Cell Mol Med. 2012; 16: 988 - 994.
dc.identifier.citedreferenceRaghu H, Gondi CS, Dinh DH, et al. Specific knockdown of uPA/uPAR attenuates invasion in glioblastoma cells and xenografts by inhibition of cleavage and trafficking of Notch -1 receptor. Mol Cancer. 2011; 10: 130.
dc.identifier.citedreferenceMahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the Urokinase-Type Plasminogen Activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol. 2018; 8: 24.
dc.identifier.citedreferenceFassl A, Tagscherer KE, Richter J, et al. Notch1 signaling promotes survival of glioblastoma cells via EGFR-mediated induction of anti-apoptotic Mcl-1. Oncogene. 2012; 31: 4698 - 4708.
dc.identifier.citedreferenceShimizu M, Cohen B, Goldvasser P, et al. Plasminogen activator uPA is a direct transcriptional target of the JAG1-Notch receptor signaling pathway in breast cancer. Cancer Res. 2011; 71: 277 - 286.
dc.identifier.citedreferenceShen Q, Cohen B, Zheng W, et al. Notch shapes the innate immunophenotype in breast cancer. Cancer Discov. 2017; 7: 1320 - 1335.
dc.identifier.citedreferenceLu X, Qian CN, Mu YG, et al. Serum CCL2 and serum TNF-α-two new biomarkers predict bone invasion, post-treatment distant metastasis and poor overall survival in nasopharyngeal carcinoma. Eur J Cancer. 2011; 47: 339 - 346.
dc.identifier.citedreferenceWildeman MA, Fles R, Herdini C, et al. Primary treatment results of Nasopharyngeal Carcinoma (NPC) in Yogyakarta, Indonesia. PLoS One. 2013; 8: e63706.
dc.identifier.citedreferenceTang LL, Chen WQ, Xue WQ, et al. Global trends in incidence and mortality of nasopharyngeal carcinoma. Cancer Lett. 2016; 374: 22 - 30.
dc.identifier.citedreferencePeng H, Chen L, Chen YP, et al. The current status of clinical trials focusing on nasopharyngeal carcinoma: a comprehensive analysis of ClinicalTrials.gov database. PLoS One. 2018; 13: e0196730.
dc.identifier.citedreferenceLee AW, Lin JC, Ng WT. Current management of nasopharyngeal cancer. Semin Radiat Oncol. 2012; 22: 233 - 244.
dc.identifier.citedreferenceHu W, Ding W, Yang H, et al. Weekly paclitaxel with concurrent radiotherapy followed by adjuvant chemotherapy in locally advanced nasopharyngeal carcinoma. Radiother Oncol. 2009; 93: 488 - 491.
dc.identifier.citedreferenceChua MLK, Wee JTS, Hui EP, et al. Nasopharyngeal carcinoma. Lancet. 2016; 387: 1012 - 1024.
dc.identifier.citedreferenceMorgan TH. Goodale’s experiments on gonadectomy of fowls. Science. 1917; 45: 483 - 484.
dc.identifier.citedreferenceArtavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999; 284: 770 - 776.
dc.identifier.citedreferenceGray GE, Mann RS, Mitsiadis E, et al. Human ligands of the Notch receptor. Am J Pathol. 1999; 154: 785 - 794.
dc.identifier.citedreferencePannuti A, Foreman K, Rizzo P, et al. Targeting notch to target cancer stem cells. Clin Cancer Res. 2010; 16: 3141 - 3152.
dc.identifier.citedreferenceRanganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011; 11: 338 - 351.
dc.identifier.citedreferenceEllisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991; 66: 649 - 661.
dc.identifier.citedreferenceSethi N, Dai X, Winter CG, et al. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011; 19: 192 - 205.
dc.identifier.citedreferenceFarnie G, Clarke RB. Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Rev. 2007; 3: 169 - 175.
dc.identifier.citedreferenceStylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006; 66: 1517 - 1525.
dc.identifier.citedreferenceSteg AD, Katre AA, Goodman B, et al. Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer. Clin Cancer Res. 2011; 17: 5674 - 5685.
dc.identifier.citedreferenceMcAuliffe SM, Morgan SL, Wyant GA, et al. Targeting notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci USA. 2012; 109: E2939 - E2948.
dc.identifier.citedreferenceXiao W, Gao Z, Duan Y, et al. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin Cancer Res. 2017; 36: 41.
dc.identifier.citedreferenceLiu ZJ, Xiao M, Balint K, et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res. 2006; 66: 4182 - 4190.
dc.identifier.citedreferenceReedijk M, Odorcic S, Chang L, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005; 65: 8530 - 8537.
dc.identifier.citedreferenceNicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 2003; 33: 416 - 421.
dc.identifier.citedreferenceHassan KA, Wang L, Korkaya H, et al. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 2013; 19: 1972 - 1980.
dc.identifier.citedreferenceDonnem T, Andersen S, Al-Shibli K, et al. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer: coexpression of Notch-1 and vascular endothelial growth factor-A predicts poor survival. Cancer. 2010; 116: 5676 - 5685.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.