Show simple item record

Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer

dc.contributor.authorEich, Marie‐lisa
dc.contributor.authorChandrashekar, Darshan Shimoga
dc.contributor.authorRodriguez Pen᷉a, Maria Del Carmen
dc.contributor.authorRobinson, Alyncia D.
dc.contributor.authorSiddiqui, Javed
dc.contributor.authorDaignault‐newton, Stephanie
dc.contributor.authorChakravarthi, Balabhadrapatruni V. S. K.
dc.contributor.authorKunju, Lakshmi Priya
dc.contributor.authorNetto, George J.
dc.contributor.authorVarambally, Sooryanarayana
dc.date.accessioned2019-09-30T15:29:59Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-09-30T15:29:59Z
dc.date.issued2019-10
dc.identifier.citationEich, Marie‐lisa ; Chandrashekar, Darshan Shimoga; Rodriguez Pen᷉a, Maria Del Carmen ; Robinson, Alyncia D.; Siddiqui, Javed; Daignault‐newton, Stephanie ; Chakravarthi, Balabhadrapatruni V. S. K.; Kunju, Lakshmi Priya; Netto, George J.; Varambally, Sooryanarayana (2019). "Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer." The Prostate 79(14): 1629-1639.
dc.identifier.issn0270-4137
dc.identifier.issn1097-0045
dc.identifier.urihttps://hdl.handle.net/2027.42/151252
dc.description.abstractBackgroundRecent microarray and sequencing studies of prostate cancer showed multiple molecular alterations during cancer progression. It is critical to evaluate these molecular changes to identify new biomarkers and targets. We performed analysis of glycine-N-acyltransferase like 1 (GLYATL1) expression in various stages of prostate cancer in this study and evaluated the regulation of GLYATL1 by androgen.MethodWe performed in silico analysis of cancer gene expression profiling and transcriptome sequencing to evaluate GLYATL1 expression in prostate cancer. Furthermore, we performed immunohistochemistry using specific GLYATL1 antibody using high-density prostate cancer tissue microarray containing primary and metastatic prostate cancer. We also tested the regulation of GLYATL1 expression by androgen and ETS transcription factor ETV1. In addition, we performed RNA-sequencing of GLYATL1 modulated prostate cancer cells to evaluate the gene expression and changes in molecular pathways.ResultsOur in silico analysis of cancer gene expression profiling and transcriptome sequencing we revealed an overexpression of GLYATL1 in primary prostate cancer. Confirming these findings by immunohistochemistry, we show that GLYATL1 is overexpressed in primary prostate cancer compared with metastatic prostate cancer and benign prostatic tissue. Low-grade cancers had higher GLYATL1 expression compared to high-grade prostate tumors. Our studies showed that GLYATL1 is upregulated upon androgen treatment in LNCaP prostate cancer cells which harbors ETV1 gene rearrangement. Furthermore, ETV1 knockdown in LNCaP cells showed downregulation of GLYATL1 suggesting potential regulation of GLYATL1 by ETS transcription factor ETV1. Transcriptome sequencing using the GLYATL1 knockdown prostate cancer cell lines LNCaP showed regulation of multiple metabolic pathways.ConclusionsIn summary, our study characterizes the expression of GLYATL1 in prostate cancer and explores the regulation of its regulation in prostate cancer showing role for androgen and ETS transcription factor ETV1. Future studies are needed to decipher the biological significance of these findings.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherETV1
dc.subject.otherprostate cancer
dc.subject.otherandrogen
dc.subject.otherimmunohistochemistry
dc.subject.otherGLYATL1
dc.titleCharacterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151252/1/pros23887.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151252/2/pros23887_am.pdf
dc.identifier.doi10.1002/pros.23887
dc.identifier.sourceThe Prostate
dc.identifier.citedreferenceGrasso CS, Wu Y-M, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012; 487: 239 - 243.
dc.identifier.citedreferenceNalla AK, Williams TF, Collins CP, Rae DT, Trobridge GD. Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome. Mol Carcinog. 2016; 55: 1761 - 1771.
dc.identifier.citedreferenceChandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017; 19: 649 - 658.
dc.identifier.citedreferenceChakravarthi BV, Goswami MT, Pathi SS, et al. Expression and role of PAICS, a De Novo purine biosynthetic gene in prostate cancer. Prostate. 2017; 77: 10 - 21.
dc.identifier.citedreferenceKim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14: R36.
dc.identifier.citedreferenceLi H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011; 27: 2987 - 2993.
dc.identifier.citedreferenceAnders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31: 166 - 169.
dc.identifier.citedreferenceAnders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11: R106.
dc.identifier.citedreferenceHuang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4: 44 - 57.
dc.identifier.citedreferenceMalinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-kappaB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res. 2017; 45: 619 - 630.
dc.identifier.citedreferenceChattopadhyay I, Wang J, Qin M, et al. Src promotes castration-recurrent prostate cancer through androgen receptor-dependent canonical and non-canonical transcriptional signatures. Oncotarget. 2017; 8: 10324 - 10347.
dc.identifier.citedreferenceChakravarthi B, Chandrashekar DS, Hodigere Balasubramanya SA, et al. Wnt receptor Frizzled 8 is a target of ERG in prostate cancer. Prostate. 2018; 78: 1311 - 1320.
dc.identifier.citedreferenceRobinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011; 29: 24 - 26.
dc.identifier.citedreferenceKhan A, Fornes O, Stigliani A, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018; 46: D260 - D266.
dc.identifier.citedreferenceRhodes DR, Kalyana-Sundaram S, Mahavisno V, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007; 9: 166 - 180.
dc.identifier.citedreferenceVarambally S, Yu J, Laxman B, et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005; 8: 393 - 406.
dc.identifier.citedreferenceArredouani MS, Lu B, Bhasin M, et al. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res. 2009; 15: 5794 - 5802.
dc.identifier.citedreferenceLapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 2004; 101: 811 - 816.
dc.identifier.citedreferenceTaylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010; 18: 11 - 22.
dc.identifier.citedreferenceVanaja DK, Cheville JC, Iturria SJ, Young CY. Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res. 2003; 63: 3877 - 3882.
dc.identifier.citedreferenceArencibia JM, Martin S, Perez-Rodriguez FJ, Bonnin A. Gene expression profiling reveals overexpression of TSPAN13 in prostate cancer. Int J Oncol. 2009; 34: 457 - 463.
dc.identifier.citedreferenceLeyten GH, Hessels D, Smit FP, et al. Identification of a candidate gene panel for the early diagnosis of prostate cancer. Clin Cancer Res. 2015; 21: 3061 - 3070.
dc.identifier.citedreferenceMa Y, Miao Y, Peng Z, et al. Identification of mutations, gene expression changes and fusion transcripts by whole transcriptome RNAseq in docetaxel resistant prostate cancer cells. SpringerPlus. 2016; 5: 1861.
dc.identifier.citedreferenceNetwork NCC. National Comprehensive Cancer Network (NCCN): Prostate Cancer. 2018.
dc.identifier.citedreferenceKaushik AK, Shojaie A, Panzitt K, et al. Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nat Commun. 2016; 7: 11612.
dc.identifier.citedreferenceWaltering KK, Urbanucci A, Visakorpi T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol. 2012; 360: 38 - 43.
dc.identifier.citedreferenceTomlins SA, Mehra R, Rhodes DR, et al. Integrative molecular concept modeling of prostate cancer progression. Nature Genet. 2007; 39: 41 - 51.
dc.identifier.citedreferenceBaena E, Shao Z, Linn DE, et al. ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 2013; 27: 683 - 698.
dc.identifier.citedreferenceSchroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014; 384: 2027 - 2035.
dc.identifier.citedreferenceShafi AA, Putluri V, Arnold JM, et al. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget. 2015; 6: 31997 - 32012.
dc.identifier.citedreferenceSiegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019; 69: 7 - 34.
dc.identifier.citedreferenceAbeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015; 163: 1011 - 1025.
dc.identifier.citedreferenceChakravarthi BV, Nepal S, Varambally S. Genomic and epigenomic alterations in cancer. Am J Pathol. 2016; 186: 1724 - 1735.
dc.identifier.citedreferenceMatsuo M, Terai K, Kameda N, et al. Designation of enzyme activity of glycine- N -acyltransferase family genes and depression of glycine- N -acyltransferase in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2012; 420: 901 - 906.
dc.identifier.citedreferenceBarfeld SJ, East P, Zuber V, Mills IG. Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Med Genomics. 2014; 7: 513.
dc.identifier.citedreferenceZhang H, Lang Q, Li J, et al. Molecular cloning and characterization of a novel human glycine- N -acyltransferase gene GLYATL1, which activates transcriptional activity of HSE pathway. Int J Mol Sci. 2007; 8: 433 - 444.
dc.identifier.citedreferencevan der Sluis R, Badenhorst CP, Erasmus E, van Dyk E, van der Westhuizen FH, van Dijk AA. Conservation of the coding regions of the glycine N -acyltransferase gene further suggests that glycine conjugation is an essential detoxification pathway. Gene. 2015; 571: 126 - 134.
dc.identifier.citedreferenceBadenhorst CP, Erasmus E, van der Sluis R, Nortje C, van Dijk AA. A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids. Drug Metab Rev. 2014; 46: 343 - 361.
dc.identifier.citedreferenceBadenhorst CPS, van der Sluis R, Erasmus E, van Dijk AA. Glycine conjugation: importance in metabolism, the role of glycine N -acyltransferase, and factors that influence interindividual variation. Expert Opin Drug Metab Toxicol. 2013; 9: 1139 - 1153.
dc.identifier.citedreferenceWaluk DP, Sucharski F, Sipos L, Silberring J, Hunt MC. Reversible lysine acetylation regulates activity of human glycine N -acyltransferase-like 2 (hGLYATL2): implications for production of glycine-conjugated signaling molecules. J Biol Chem. 2012; 287: 16158 - 16167.
dc.identifier.citedreferencePaulo P, Ribeiro FR, Santos J, et al. Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements. Neoplasia. 2012; 14: 600 - 611.
dc.identifier.citedreferenceTomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005; 310: 644 - 648.
dc.identifier.citedreferenceWang J, Shidfar A, Ivancic D, et al. Overexpression of lipid metabolism genes and PBX1 in the contralateral breasts of women with estrogen receptor-negative breast cancer. Int J Cancer. 2017; 140: 2484 - 2497.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.