Show simple item record

Self‐Assembly of Wireframe DNA Nanostructures from Junction Motifs

dc.contributor.authorHuang, Kai
dc.contributor.authorYang, Donglei
dc.contributor.authorTan, Zhenyu
dc.contributor.authorChen, Silian
dc.contributor.authorXiang, Ye
dc.contributor.authorMi, Yongli
dc.contributor.authorMao, Chengde
dc.contributor.authorWei, Bryan
dc.date.accessioned2019-09-30T15:30:41Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-09-30T15:30:41Z
dc.date.issued2019-08-26
dc.identifier.citationHuang, Kai; Yang, Donglei; Tan, Zhenyu; Chen, Silian; Xiang, Ye; Mi, Yongli; Mao, Chengde; Wei, Bryan (2019). "Self‐Assembly of Wireframe DNA Nanostructures from Junction Motifs." Angewandte Chemie International Edition 58(35): 12123-12127.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/151279
dc.description.abstractWireframe frameworks have been investigated for the construction of complex nanostructures from a scaffolded DNA origami approach; however, a similar framework is yet to be fully explored in a scaffold‐free “LEGO” approach. Herein, we describe a general design scheme to construct wireframe DNA nanostructures entirely from short synthetic strands. A typical edge of the resulting structures in this study is composed of two parallel duplexes with crossovers on both ends, and three, four, or five edges radiate out from a certain vertex. By using such a self‐assembly scheme, we produced planar lattices and polyhedral objects.Conjunction junction, what’s your function? Junction motifs of specific angle arrangements are designed. 2D wireframe lattices and 3D wireframe polyhedra are constructed accordingly.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwireframe structures
dc.subject.otherDNA nanostructures
dc.subject.otherself-assembly
dc.subject.otherjunction motifs
dc.titleSelf‐Assembly of Wireframe DNA Nanostructures from Junction Motifs
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151279/1/anie201906408-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151279/2/anie201906408_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151279/3/anie201906408.pdf
dc.identifier.doi10.1002/anie.201906408
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceD. Yang, Z. Tan, Y. Mi, B. Wei, Nucleic Acids Res. 2017, 45, 3606 – 3611;
dc.identifier.citedreferenceJ. H. Chen, N. C. Seeman, Nature 1991, 350, 631 – 633;
dc.identifier.citedreferenceY. W. Zhang, N. C. Seeman, J. Am. Chem. Soc. 1994, 116, 1661 – 1669;
dc.identifier.citedreferenceH. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean, Science 2003, 301, 1882 – 1884;
dc.identifier.citedreferenceR. P. Goodman, I. A. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F. Schmidt, A. J. Turberfield, Science 2005, 310, 1661 – 1665;
dc.identifier.citedreferenceJ. Malo, J. C. Mitchell, C. Venien-Bryan, J. R. Harris, H. Wille, D. J. Sherratt, A. J. Turberfield, Angew. Chem. Int. Ed. 2005, 44, 3057 – 3061; Angew. Chem. 2005, 117, 3117 – 3121;
dc.identifier.citedreferenceY. He, Y. Tian, A. E. Ribbe, C. D. Mao, J. Am. Chem. Soc. 2006, 128, 15978 – 15979;
dc.identifier.citedreferenceY. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, C. D. Mao, Nature 2008, 452, 198 – 201;
dc.identifier.citedreferenceJ. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, N. C. Seeman, Nature 2009, 461, 74 – 77.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Ke, L. L. Ong, W. M. Shih, P. Yin, Science 2012, 338, 1177 – 1183;
dc.identifier.citedreferenceB. Wei, M. Dai, P. Yin, Nature 2012, 485, 623 – 626;
dc.identifier.citedreferenceL. L. Ong, N. Hanikel, O. K. Yaghi, C. Grun, M. T. Strauss, P. Bron, J. Lai-Kee-Him, F. Schueder, B. Wang, P. Wang, J. Y. Kishi, C. Myhrvold, A. Zhu, R. Jungmann, G. Bellot, Y. Ke, P. Yin, Nature 2017, 552, 72 – 77.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Wang, T. Lin, S. Zhang, T. Bai, Y. Mi, B. Wei, Nucleic Acids Res. 2016, 44, 7989 – 7996;
dc.identifier.citedreferenceJ. Song, Z. Li, P. Wang, T. Meyer, C. Mao, Y. Ke, Science 2017, 357, eaan 3377.
dc.identifier.citedreferenceM. Matthies, N. P. Agarwal, E. Poppleton, F. M. Joshi, P. Sulc, T. L. Schmidt, ACS Nano 2019, 13, 1839 – 1848;
dc.identifier.citedreferenceW. Wang, S. Chen, B. An, K. Huang, T. Bai, M. Xu, G. Bellot, Y. Ke, Y. Xiang, B. Wei, Nat. Commun. 2019, 10, 1067.
dc.identifier.citedreferenceH. P. Liu, Y. Chen, Y. He, A. E. Ribbe, C. D. Mao, Angew. Chem. Int. Ed. 2006, 45, 1942 – 1945; Angew. Chem. 2006, 118, 1976 – 1979.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Cui, R. Chen, M. Kai, Y. Wang, Y. Mi, B. Wei, ACS Nano 2017, 11, 8199 – 8206;
dc.identifier.citedreferenceY. He, M. Su, P. A. Fang, C. Zhang, A. E. Ribbe, W. Jiang, C. Mao, Angew. Chem. Int. Ed. 2010, 49, 748 – 751; Angew. Chem. 2010, 122, 760 – 763.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Liu, M. Wang, Z. Deng, R. Walulu, C. Mao, J. Am. Chem. Soc. 2004, 126, 2324 – 2325;
dc.identifier.citedreferenceY. He, Y. Chen, H. P. Liu, A. E. Ribbe, C. D. Mao, J. Am. Chem. Soc. 2005, 127, 12202 – 12203;
dc.identifier.citedreferenceY. He, Y. Tian, Y. Chen, Z. X. Deng, A. E. Ribbe, C. D. Mao, Angew. Chem. Int. Ed. 2005, 44, 6694 – 6696; Angew. Chem. 2005, 117, 6852 – 6854.
dc.identifier.citedreferenceL. Liu, Z. Li, Y. Li, C. Mao, J. Am. Chem. Soc. 2019, 141, 4248 – 4251.
dc.identifier.citedreferenceP. Wang, S. Wu, C. Tian, G. Yu, W. Jiang, G. Wang, C. Mao, J. Am. Chem. Soc. 2016, 138, 13579 – 13585.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Zhang, M. Su, Y. He, X. Zhao, P. Fang, A. E. Ribbe, W. Jiang, C. Mao, Proc. Natl. Acad. Sci. USA 2008, 105, 10665 – 10669;
dc.identifier.citedreference 
dc.identifier.citedreferenceP. W. Rothemund, Nature 2006, 440, 297 – 302;
dc.identifier.citedreferenceH. Dietz, S. M. Douglas, W. M. Shih, Science 2009, 325, 725 – 730;
dc.identifier.citedreferenceS. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, W. M. Shih, Nature 2009, 459, 414 – 418;
dc.identifier.citedreferenceY. Ke, S. M. Douglas, M. Liu, J. Sharma, A. Cheng, A. Leung, Y. Liu, W. M. Shih, H. Yan, J. Am. Chem. Soc. 2009, 131, 15903 – 15908;
dc.identifier.citedreferenceD. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu, H. Yan, Science 2011, 332, 342 – 346;
dc.identifier.citedreferenceE. Benson, A. Mohammed, J. Gardell, S. Masich, E. Czeizler, P. Orponen, B. Hogberg, Nature 2015, 523, 441 – 444;
dc.identifier.citedreferenceF. Zhang, S. Jiang, S. Wu, Y. Li, C. Mao, Y. Liu, H. Yan, Nat. Nanotechnol. 2015, 10, 779 – 784;
dc.identifier.citedreferenceR. Veneziano, S. Ratanalert, K. Zhang, F. Zhang, H. Yan, W. Chiu, M. Bathe, Science 2016, 352, 1534.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. C. Seeman, N. R. Kallenbach, Biophys. J. 1983, 44, 201 – 209;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.