Show simple item record

Steady State Characteristics of the Terrestrial Geopauses

dc.contributor.authorTrung, Huy‐sinh
dc.contributor.authorLiemohn, Michael W.
dc.contributor.authorIlie, Raluca
dc.date.accessioned2019-09-30T15:30:44Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:30:44Z
dc.date.issued2019-07
dc.identifier.citationTrung, Huy‐sinh ; Liemohn, Michael W.; Ilie, Raluca (2019). "Steady State Characteristics of the Terrestrial Geopauses." Journal of Geophysical Research: Space Physics 124(7): 5070-5081.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/151281
dc.description.abstractThe boundary separating solar wind plasma from ionospheric plasma is typically thought to be the magnetopause. A generalization of the magnetopause concept called the geopause was developed by Moore and Delcourt (1995, https://doi.org/10.1029/95RG00872). The geopause is a surface defined where solar wind quantities equal the ionospheric quantities. Geopause studies have helped characterize magnetospheric systems. However, comparative studies between the geopauses to the magnetopause have not been conducted. In this paper, we analyze the influence of inner boundary composition and interplanetary magnetic field (IMF) orientation on the steady state terrestrial geopauses and the magnetopause. This study simulates the Earth’s magnetosphere by using the multifluid capabilities of the Block Adaptive Tree Solar wind Roe-type Upwind Scheme magnetohydrodynamics model within the Space Weather Modeling Framework. The simulations show that the dayside magnetopause was not influenced by the presence of oxygen in the outflow for both IMF orientations and was larger than the other geopauses. In contrast, the nightside magnetopause was sensitive to the conditions in the outflow. The nightside magnetopause was smaller than the other geopauses with southward IMF. With northward IMF, the nightside magnetopause was the largest structure in comparison with the plasma-based geopauses. Our results indicate that no single boundary surface dictates the transition from a solar wind dominated plasma to ionosphere dominated plasma.Key PointsFour definitions of the geopause are compared: number density, mass density, plasma pressure, and last closed field line (magnetopause)Multifluid magnetohydrodynamic modeling is used to calculate these geopauses for idealized north and south interplanetary magnetic fieldThe magnetopause is farthest out during north interplanetary field, but the plasma geopauses are farthest during south field
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Geophysical Union (AGU)
dc.subject.othermagnetospheres
dc.subject.othermagnetopause
dc.subject.othergeopause
dc.subject.othersimulations
dc.titleSteady State Characteristics of the Terrestrial Geopauses
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151281/1/jgra55008_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151281/2/jgra55008.pdf
dc.identifier.doi10.1029/2019JA026636
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSong, P., De Zeeuw, D. L., Gombosi, T. I., Groth, C. P. T., & Powell, K. G. ( 1999 ). A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field. Journal of Geophysical Research, 104 ( A12 ), 28,361 - 28,378. https://doi.org/10.1029/1999JA900378
dc.identifier.citedreferenceRastätter, L., Kuznetsova, M. M., Glocer, A., Welling, D., Meng, X., Raeder, J., Wiltberger, M., Jordanova, V. K., Yu, Y., Zaharia, S., Weigel, R. S., Sazykin, S., Boynton, R., Wei, H., Eccles, V., Horton, W., Mays, M. L., & Gannon, J. ( 2013 ). Geospace environment modeling 2008-2009 challenge: Dst index. Space Weather, 11, 187 - 205. https://doi.org/10.1002/swe.20036
dc.identifier.citedreferenceRastätter, L., Kuznetsova, M. M., Vapirev, A., Ridley, A., Wiltberger, M., Pulkkinen, A., Hesse, M., & Singer, H. J. ( 2011 ). Geospace environment modeling 2008-2009 challenge: Geosynchronous magnetic field. Space Weather, 9, S04005. https://doi.org/10.1029/2010SW000617
dc.identifier.citedreferenceRidley, A. J. ( 2007 ). Alfvén wings at Earth’s magnetosphere under strong interplanetary magnetic fields. Annales Geophysicae, 25 ( 2 ), 533 - 542. https://doi.org/10.5194/angeo-25-533-2007
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., & De Zeeuw, D. L. ( 2004 ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22 ( 2 ), 567 - 584. https://doi.org/10.5194/angeo-22-567-2004
dc.identifier.citedreferenceRidley, A. J., & Liemohn, M. W. ( 2002 ). A model-derived storm time asymmetric ring current driven electric field description. Journal of Geophysical Research, 107 ( A8 ), SMP 2 - 1-SMP 2-12. https://doi.org/10.1029/2001JA000051
dc.identifier.citedreferenceSharp, R. D., Lennartsson, W., Peterson, W. K., & Shelley, E. G. ( 1982 ). The origins of the plasma in the distant plasma sheet. Journal of Geophysical Research, 87 ( A12 ), 10,420 - 10,424. https://doi.org/10.1029/JA087iA12p10420
dc.identifier.citedreferenceShelley, E. G., Johnson, R. G., & Sharp, R. D. ( 1972 ). Satellite observations of energetic heavy ions during a geomagnetic storm. Journal of Geophysical Research, 77 ( 31 ), 6104 - 6110. https://doi.org/10.1029/JA077i031p06104
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastätter, L., Bilitza, D., Butala, M., Codrescu, M., Emery, B. A., Foster, B., Fuller-Rowell, T. J., Huba, J., Mannucci, A. J., Pi, X., Ridley, A., Scherliess, L., Schunk, R. W., Sojka, J. J., Stephens, P., Thompson, D. C., Weimer, D., Zhu, L., & Sutton, E. ( 2012 ). CEDAR electrodynamics thermosphere ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Space Weather, 10, S10004. https://doi.org/10.1029/2012SW000851
dc.identifier.citedreferenceSiscoe, G. L., Erickson, G. M., Sonnerup, B. U. Ã ., Maynard, N. C., Siebert, K. D., Weimer, D. R., & White, W. W. ( 2001 ). Global role of E - in magnetopause reconnection: An explicit demonstration. Journal of Geophysical Research, 106 ( A7 ), 13,015 - 13,022. https://doi.org/10.1029/2000JA000062
dc.identifier.citedreferenceTóth, G., De Zeeuw, D. L., Gombosi, T. I., Manchester, W. B., Ridley, A. J., Sokolov, I. V., & Roussev, I. I. ( 2007 ). Sun-to-thermosphere simulation of the 28-30 October 2003 storm with the Space Weather Modeling Framework. Space Weather, 5, 06003. https://doi.org/10.1029/2006SW000272
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., Zeeuw, D. L. D., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y.-J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 - 903. https://doi.org/10.1016/j.jcp.2011.02.006, special Issue: Computational Plasma Physics.
dc.identifier.citedreferenceWelling, D. T., & Liemohn, M. W. ( 2014 ). Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. Journal of Geophysical Research: Space Physics, 119, 2691 - 2705. https://doi.org/10.1002/2013JA019374
dc.identifier.citedreferenceWelling, D. T., & Ridley, A. J. ( 2010 ). Exploring sources of magnetospheric plasma using multispecies MHD. Journal of Geophysical Research, 115, A04201. https://doi.org/10.1029/2009JA014596
dc.identifier.citedreferenceWelling, D. T., Tóth, G., Jordanova, V. K., & Yu, Y. ( 2018 ). Integration of RAM-SCB into the space weather modeling framework. Journal of Atmospheric and Solar-Terrestrial Physics, 177, 160 - 168. https://doi.org/10.1016/j.jastp.2018.01.007
dc.identifier.citedreferenceWiltberger, M., Lotko, W., Lyon, J. G., Damiano, P., & Merkin, V. ( 2010 ). Influence of cusp O+ outflow on magnetotail dynamics in a multifluid MHD model of the magnetosphere. Journal of Geophysical Research, 115, A00J05. https://doi.org/10.1029/2010JA015579
dc.identifier.citedreferenceWinglee, R. M. ( 1998 ). Multi-fluid simulations of the magnetosphere: The identification of the geopause and its variation with IMF. Geophysical Research Letters, 25 ( 24 ), 4441 - 4444. https://doi.org/10.1029/1998GL900217
dc.identifier.citedreferenceWinglee, R. ( 2000 ). Mapping of ionospheric outflows into the magnetosphere for varying imf conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 62 ( 6 ), 527 - 540. https://doi.org/10.1016/S1364-6826(00)00015-8
dc.identifier.citedreferenceWinglee, R. M., Chua, D., Brittnacher, M., Parks, G. K., & Lu, G. ( 2002 ). Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross-polar cap potential. Journal of Geophysical Research, 107 ( A9 ), SMP 11 - 1-SMP 11-12. https://doi.org/10.1029/2001JA000214
dc.identifier.citedreferenceXu, S., Liemohn, M. W., Dong, C., Mitchell, D. L., Bougher, S. W., & Ma, Y. ( 2016 ). Pressure and ion composition boundaries at Mars. Journal of Geophysical Research: Space Physics, 121, 6417 - 6429. https://doi.org/10.1002/2016JA022644
dc.identifier.citedreferenceYoung, D. T., Balsiger, H., & Geiss, J. ( 1982 ). Correlations of magnetospheric ion composition with geomagnetic and solar activity. Journal of Geophysical Research, 87 ( A11 ), 9077 - 9096. https://doi.org/10.1029/JA087iA11p09077
dc.identifier.citedreferenceYu, Y., & Ridley, A. J. ( 2009 ). Response of the magnetosphere-ionosphere system to a sudden southward turning of interplanetary magnetic field. Journal of Geophysical Research, 114, A03216. https://doi.org/10.1029/2008JA013292
dc.identifier.citedreferenceZhang, J., Liemohn, M. W., De Zeeuw, D. L., Borovsky, J. E., Ridley, A. J., Toth, G., Sazykin, S., Thomsen, M. F., Kozyra, J. U., Gombosi, T. I., & Wolf, R. A. ( 2007 ). Understanding storm-time ring current development through data-model comparisons of a moderate storm. Journal of Geophysical Research, 112, A04208. https://doi.org/10.1029/2006JA011846
dc.identifier.citedreferenceCassak, P. A., & Shay, M. A. ( 2007 ). Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Physics of Plasmas, 14 ( 10 ), 102114. https://doi.org/10.1063/1.2795630
dc.identifier.citedreferenceChandler, M. O., & Moore, T. E. ( 2003 ). Observations of the geopause at the equatorial magnetopause: Density and temperature. Geophysical Research Letters, 30 ( 16 ), 1869. https://doi.org/10.1029/2003GL017611
dc.identifier.citedreferenceChapman, S., & Ferraro, V. C. A. ( 1931 ). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36 ( 2 ), 77 - 97. https://doi.org/10.1029/TE036i002p00077
dc.identifier.citedreferenceChappell, C. R., Moore, T. E., & Waite, J. H. ( 1987 ). The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. Journal of Geophysical Research, 92 ( A6 ), 5896 - 5910. https://doi.org/10.1029/JA092iA06p05896
dc.identifier.citedreferenceDe Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., & Tóth, G. ( 2004 ). Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 109, A12219. https://doi.org/10.1029/2003JA010366
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47 - 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceGlocer, A., Fok, M., Meng, X., Tóth, G., Buzulukova, N., Chen, S., & Lin, K. ( 2013 ). CRCM + BATS-R-US two-way coupling. Journal of Geophysical Research: Space Physics, 118, 1635 - 1650. https://doi.org/10.1002/jgra.50221
dc.identifier.citedreferenceGlocer, A., Tóth, G., Ma, Y., Gombosi, T., Zhang, J.-C., & Kistler, L. M. ( 2009 ). Multifluid Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms-Initial results. Journal of Geophysical Research, 114, A12203. https://doi.org/10.1029/2009JA014418
dc.identifier.citedreferenceHaiducek, J. D., Welling, D. T., Ganushkina, N. Y., Morley, S. K., & Ozturk, D. S. ( 2017 ). SWMF global magnetosphere simulations of January 2005: Geomagnetic indices and cross-polar cap potential. Space Weather, 15, 1567 - 1587. https://doi.org/10.1002/2017SW001695
dc.identifier.citedreferenceIlie, R., Ganushkina, N., Tóth, G., Dubyagin, S., & Liemohn, M. W. ( 2015b ). Testing the magnetotail configuration based on observations of low-altitude isotropic boundaries during quiet times. Journal of Geophysical Research: Space Physics, 120, 10,557 - 10,573. https://doi.org/10.1002/2015JA021858
dc.identifier.citedreferenceIlie, R., & Liemohn, M. W. ( 2016 ). The outflow of ionospheric nitrogen ions: A possible tracer for the altitude-dependent transport and energization processes of ionospheric plasma. Journal of Geophysical Research: Space Physics, 121, 9250 - 9255. https://doi.org/10.1002/2015JA022162
dc.identifier.citedreferenceIlie, R., Liemohn, M. W., Kozyra, J., & Borovsky, J. ( 2010b ). An investigation of the magnetosphere-ionosphere response to real and idealized co-rotating interaction region events through global magnetohydrodynamic simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466 ( 2123 ), 3279 - 3303. https://doi.org/10.1098/rspa.2010.0074
dc.identifier.citedreferenceIlie, R., Liemohn, M. W., & Ridley, A. ( 2010a ). The effect of smoothed solar wind inputs on global modeling results. Journal of Geophysical Research, 115, A01213. https://doi.org/10.1029/2009JA014443
dc.identifier.citedreferenceIlie, R., Liemohn, M. W., Tóth, G., Ganushkina, N. Y., & Daldorff, L. K. S. ( 2015a ). Assessing the role of oxygen on ring current formation and evolution through numerical experiments. Journal of Geophysical Research: Space Physics, 120, 4656 - 4668. https://doi.org/10.1002/2015JA021157
dc.identifier.citedreferenceIlie, R., Liemohn, M. W., Tóth, G., & Skoug, R. M. ( 2012 ). Kinetic model of the inner magnetosphere with arbitrary magnetic field. Journal of Geophysical Research, 117, A04208. https://doi.org/10.1029/2011JA017189
dc.identifier.citedreferenceIlie, R., Skoug, R. M., Valek, P., Funsten, H. O., & Glocer, A. ( 2013 ). Global view of inner magnetosphere composition during storm time. Journal of Geophysical Research: Space Physics, 118, 7074 - 7084. https://doi.org/10.1002/2012JA018468
dc.identifier.citedreferenceLiemohn, M., Ganushkina, N. Y., De Zeeuw, D. L., Rastätter, L., Kuznetsova, M., Welling, D. T., Tóth, G., Ilie, R., Gombosi, T. I., & van der Holst, B. ( 2018 ). Real-time SWMF at CCMC: Assessing the Dst output from continuous operational simulations. Space Weather, 16, 1583 - 1603. https://doi.org/10.1029/2018SW001953
dc.identifier.citedreferenceLiemohn, M. W., & Welling, D. T. ( 2016 ). Ionospheric and Solar Wind Contributions to Magnetospheric Ion Density and Temperature throughout the Magnetotail, Magnetosphere-ionosphere coupling in the solar system (pp. 101 - 114 ), 8. Hoboken, NJ, USA: American Geophysical Union (AGU). https://doi.org/10.1002/9781119066880.ch8
dc.identifier.citedreferenceMeng, X., Tóth, G., Glocer, A., Fok, M.-C., & Gombosi, T. I. ( 2013 ). Pressure anisotropy in global magnetospheric simulations: Coupling with ring current models. Journal of Geophysical Research: Space Physics, 118, 5639 - 5658. https://doi.org/10.1002/jgra.50539
dc.identifier.citedreferenceMeng, X., Tóth, G., Liemohn, M. W., Gombosi, T. I., & Runov, A. ( 2012 ). Pressure anisotropy in global magnetospheric simulations: A magnetohydrodynamics model. Journal of Geophysical Research, 117, A08216. https://doi.org/10.1029/2012JA017791
dc.identifier.citedreferenceMoore, T. E., & Delcourt, D. C. ( 1995 ). The geopause. Reviews of Geophysics, 33 ( 2 ), 175 - 209. https://doi.org/10.1029/95RG00872
dc.identifier.citedreferenceMoore, T. E., Peterson, W. K., Russell, C. T., Chandler, M. O., Collier, M. R., Collin, H. L., Craven, P. D., Fitzenreiter, R., Giles, B. L., & Pollock, C. J. ( 1999 ). Ionospheric mass ejection in response to a CME. Geophysical Research Letters, 26 ( 15 ), 2339 - 2342. https://doi.org/10.1029/1999GL900456
dc.identifier.citedreferencePembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. ( 2012 ). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Research, 117, A02211. https://doi.org/10.1029/2011JA016979
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & Zeeuw, D. L. D. ( 1999 ). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 - 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferencePulkkinen, A., Kuznetsova, M., Ridley, A., Raeder, J., Vapirev, A., Weimer, D., Weigel, R. S., Wiltberger, M., Millward, G., Rastätter, L., Hesse, M., Singer, H. J., & Chulaki, A. ( 2011 ). Geospace environment modeling 2008-2009 challenge: Ground magnetic field perturbations. Space Weather, 9, SO2004. https://doi.org/10.1029/2010SW000600
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Hesse, M., Ridley, A., Raeder, J., Singer, H. J., & Chulaki, A. ( 2010 ). Systematic evaluation of ground and geostationary magnetic field predictions generated by global magnetohydrodynamic models. Journal of Geophysical Research, 115, A03206. https://doi.org/10.1029/2009JA014537
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J., & Weigel, R. ( 2013 ). Community-wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 - 385. https://doi.org/10.1002/swe.20056
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.