Show simple item record

Large Fugitive Methane Emissions From Urban Centers Along the U.S. East Coast

dc.contributor.authorPlant, Genevieve
dc.contributor.authorKort, Eric A.
dc.contributor.authorFloerchinger, Cody
dc.contributor.authorGvakharia, Alexander
dc.contributor.authorVimont, Isaac
dc.contributor.authorSweeney, Colm
dc.date.accessioned2019-09-30T15:30:46Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:30:46Z
dc.date.issued2019-07-28
dc.identifier.citationPlant, Genevieve; Kort, Eric A.; Floerchinger, Cody; Gvakharia, Alexander; Vimont, Isaac; Sweeney, Colm (2019). "Large Fugitive Methane Emissions From Urban Centers Along the U.S. East Coast." Geophysical Research Letters 46(14): 8500-8507.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/151283
dc.description.abstractUrban emissions remain an underexamined part of the methane budget. Here we present and interpret aircraft observations of six old and leak‐prone major cities along the East Coast of the United States. We use direct observations of methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), ethane (C2H6), and their correlations to quantify CH4 emissions and attribute to natural gas. We find the five largest cities emit 0.85 (0.63, 1.12) Tg CH4/year, of which 0.75 (0.49, 1.10) Tg CH4/year is attributed to natural gas. Our estimates, which include all thermogenic methane sources including end use, are more than twice that reported in the most recent gridded EPA inventory, which does not include end‐use emissions. These results highlight that current urban inventory estimates of natural gas emissions are substantially low, either due to underestimates of leakage, lack of inclusion of end‐use emissions, or some combination thereof.Plain Language SummaryRecent efforts to quantify fugitive methane associated with the oil and gas sector, with a particular focus on production, have resulted in significant revisions upward of emission estimates. In comparison, however, there has been limited focus on urban methane emissions. Given the volume of gas distributed and used in cities, urban losses can impact national‐level emissions. In this study we use aircraft observations of methane, carbon dioxide, carbon monoxide, and ethane to determine characteristic correlation slopes, enabling quantification of urban methane emissions and attribution to natural gas. We sample nearly 12% of the U.S. population and 4 of the 10 most populous cities, focusing on older, leak‐prone urban centers. Emission estimates are more than twice the total in the U.S. EPA inventory for these regions and are predominantly attributed to fugitive natural gas losses. Current estimates for methane emissions from the natural gas supply chain appear to require revision upward, in part possibly by including end‐use emissions, to account for these urban losses.Key PointsAircraft observations downwind of six major cities along the U.S. East Coast are used to estimate urban methane emissionsObserved urban methane estimates are about twice that reported in the Gridded EPA inventoryMethane emissions from natural gas (including end use) in five cities combined exceeds nationwide emissions estimate from local distribution
dc.publisherWiley Periodicals, Inc.
dc.subject.othermethane
dc.subject.otherurban emissions
dc.subject.otheraircraft observations
dc.titleLarge Fugitive Methane Emissions From Urban Centers Along the U.S. East Coast
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151283/1/grl59329.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151283/2/grl59329_am.pdf
dc.identifier.doi10.1029/2019GL082635
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSimon, H., Beck, L., Bhave, P. V., Divita, F., Hsu, Y., Luecken, D., Mobley, J. D., Pouliot, G. A., Reff, A., Sarwar, G., & Strum, M. ( 2010 ). The development and uses of EPA’s SPECIATE database. Atmospheric Pollution Research, 1 ( 4 ), 196 – 206. https://doi.org/10.5094/APR.2010.026
dc.identifier.citedreferenceLamb, B. K., Cambaliza, M. O. L., Davis, K. J., Edburg, S. L., Ferrara, T. W., Floerchinger, C., Heimburger, A. M. F., Herndon, S., Lauvaux, T., Lavoie, T., Lyon, D. R., Miles, N., Prasad, K. R., Richardson, S., Roscioli, J. R., Salmon, O. E., Shepson, P. B., Stirm, B. H., & Whetstone, J. ( 2016 ). Direct and indirect measurements and modeling of methane emissions in Indianapolis, Indiana. Environmental Science & Technology, 50 ( 16 ), 8910 – 8917. https://doi.org/10.1021/acs.est.6b01198
dc.identifier.citedreferenceLamb, B. K., Edburg, S. L., Ferrara, T. W., Howard, T., Harrison, M. R., Kolb, C. E., Townsend‐Small, A., Dyck, W., Possolo, A., & Whetstone, J. R. ( 2015 ). Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States. Environmental Science & Technology, 49 ( 8 ), 5161 – 5169. https://doi.org/10.1021/es505116p
dc.identifier.citedreferenceMaasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad, L., Bloom, A. A., Bowman, K. W., Jeong, S., & Fischer, M. L. ( 2016 ). Gridded National Inventory of U.S. methane emissions. Environmental Science & Technology, 50 ( 23 ), 13,123 – 13,133. https://doi.org/10.1021/acs.est.6b02878
dc.identifier.citedreferenceMcKain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R., Floerchinger, C., Herndon, S. C., Nehrkorn, T., Zahniser, M. S., Jackson, R. B., Phillips, N., & Wofsy, S. C. ( 2015 ). Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proceedings of the National Academy of Sciences, 112 ( 7 ), 1941 – 1946. https://doi.org/10.1073/pnas.1416261112
dc.identifier.citedreferenceMiller, S. M., Matross, D. M., Andrews, A. E., Millet, D. B., Longo, M., Gottlieb, E. W., Hirsch, A. I., Gerbig, C., Lin, J. C., Daube, B. C., Hudman, R. C., Dias, P. L. S., Chow, V. Y., & Wofsy, S. C. ( 2008 ). Sources of carbon monoxide and formaldehyde in North America determined from high‐resolution atmospheric data. Atmospheric Chemistry and Physics, 8 ( 24 ), 7673 – 7696. https://doi.org/10.5194/acp‐8‐7673‐2008
dc.identifier.citedreferenceMiller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., Dlugokencky, E. J., Eluszkiewicz, J., Fischer, M. L., Janssens‐Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T., & Sweeney, C. ( 2013 ). Anthropogenic emissions of methane in the United States. Proceedings of the National Academy of Sciences, 110 ( 50 ), 20,018 – 20,022. https://doi.org/10.1073/pnas.1314392110
dc.identifier.citedreferenceNassar, R., Napier‐Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel, F. R., & Deng, F. ( 2013 ). Improving the temporal and spatial distribution of CO 2 emissions from global fossil fuel emission data sets. Journal of Geophysical Research: Atmospheres, 118, 917 – 933. https://doi.org/10.1029/2012JD018196
dc.identifier.citedreferenceNational Academies of Sciences, E. ( 2018 ). Improving characterization of anthropogenic methane emissions in the United States. Retrieved from https://www.nap.edu/catalog/24987/improving‐characterization‐of‐anthropogenic‐methane‐emissions‐in‐the‐united‐states
dc.identifier.citedreferenceOda, T., & Maksyutov, S. ( 2015 ). ODIAC fossil fuel CO 2 emissions dataset (ODIAC2017), Center for Global Environmental Research, National Institute for Environmental Studies. https://doi.org/10.17595/20170411.001
dc.identifier.citedreferencePeischl, J., Karion, A., Sweeney, C., Kort, E. A., Smith, M. L., Brandt, A. R., Yeskoo, T., Aikin, K. C., Conley, S. A., Gvakharia, A., Trainer, M., Wolter, S., & Ryerson, T. B. ( 2016 ). Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota. Journal of Geophysical Research: Atmospheres, 121, 6101 – 6111. https://doi.org/10.1002/2015JD024631
dc.identifier.citedreferencePhillips, N. G., Ackley, R., Crosson, E. R., Down, A., Hutyra, L. R., Brondfield, M., Karr, J. D., Zhao, K., & Jackson, R. B. ( 2013 ). Mapping urban pipeline leaks: Methane leaks across Boston. Environmental Pollution, 173, 1 – 4. https://doi.org/10.1016/j.envpol.2012.11.003
dc.identifier.citedreferenceRen, X., Salmon, O. E., Hansford, J. R., Ahn, D., Hall, D., Benish, S. E., Stratton, P. R., He, H., Sahu, S., Grimes, C., Heimburger, A. M. F., Martin, C. R., Cohen, M. D., Stunder, B., Salawitch, R. J., Ehrman, S. H., Shepson, P. B., & Dickerson, R. R. ( 2018 ). Methane emissions from the Baltimore‐Washington area based on airborne observations: Comparison to emissions inventories. Journal of Geophysical Research: Atmospheres, 123, 8869 – 8882. https://doi.org/10.1029/2018JD028851
dc.identifier.citedreferenceSalmon, O. E., Shepson, P. B., Ren, X., He, H., Hall, D. L., Dickerson, R. R., Stirm, B. H., Brown, S. S., Fibiger, D. L., McDuffie, E. E., Campos, T. L., Gurney, K. R., & Thornton, J. A. ( 2018 ). Top‐down estimates of NO x and CO emissions from Washington, D.C.‐Baltimore During the WINTER Campaign. Journal of Geophysical Research: Atmospheres, 123, 7705 – 7724. https://doi.org/10.1029/2018JD028539
dc.identifier.citedreferenceSmith, M. L., Gvakharia, A., Kort, E. A., Sweeney, C., Conley, S. A., Faloona, I., Newberger, T., Schnell, R., Schwietzke, S., & Wolter, S. ( 2017 ). Airborne quantification of methane emissions over the Four Corners region. Environmental Science & Technology, 51 ( 10 ), 5832 – 5837. https://doi.org/10.1021/acs.est.6b06107
dc.identifier.citedreferenceTravis, K. ( 2017 ). Monthly‐mean NEI2011 data. Retrieved from http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/NEI2011/v2017‐02‐MM/
dc.identifier.citedreferenceU.S. Census Bureau, P. D. ( 2018 ). Annual estimates of the resident population for incorporated places of 50,000 or more, ranked by July 1, 2017 Population: April 1, 2010 to July 1, 2017.
dc.identifier.citedreferenceU.S. Environmental Protection Agency. ( 2017 ). Inventory of U.S. greenhouse gas emissions and sinks: 1990–2015. Retrieved from https://www.epa.gov/ghgemissions/inventory‐us‐greenhouse‐gas‐emissions‐and‐sinks‐1990‐2015
dc.identifier.citedreferencevon Fischer, J. C., Cooley, D., Chamberlain, S., Gaylord, A., Griebenow, C. J., Hamburg, S. P., Salo, J., Schumacher, R., Theobald, D., & Ham, J. ( 2017 ). Rapid, vehicle‐based identification of location and magnitude of urban natural gas pipeline leaks. Environmental Science & Technology, 51, 4091 – 4099. https://doi.org/10.1021/acs.est.6b06095
dc.identifier.citedreferenceWennberg, P. O., Mui, W., Wunch, D., Kort, E. A., Blake, D. R., Atlas, E. L., Santoni, G. W., Wofsy, S. C., Diskin, G. S., Jeong, S., & Fischer, M. L. ( 2012 ). On the sources of methane to the Los Angeles atmosphere. Environmental Science & Technology, 46, 9282 – 9289. https://doi.org/10.1021/es301138y
dc.identifier.citedreferenceWest, J. J., Fiore, A. M., Horowitz, L. W., & Mauzerall, D. L. ( 2006 ). Global health benefits of mitigating ozone pollution with methane emission controls. Proceedings of the National Academy of Sciences, 103, 3988 – 3993. https://doi.org/10.1073/pnas.0600201103
dc.identifier.citedreferenceWong, C. K., Pongetti, T. J., Oda, T., Rao, P., Gurney, K. R., Newman, S., Duren, R. M., Miller, C. E., Yung, Y. L., & Sander, S. P. ( 2016 ). Monthly trends of methane emissions in Los Angeles from 2011 to 2015 inferred by CLARS‐FTS observations. Atmospheric Chemistry and Physics, 16, 13,121 – 13,130. https://doi.org/10.5194/acp‐16‐13121‐2016
dc.identifier.citedreferenceWunch, D., Toon, G. C., Hedelius, J. K., Vizenor, N., Roehl, C. M., Saad, K. M., Blavier, J. F. L., Blake, D. R., & Wennberg, P. O. ( 2016 ). Quantifying the loss of processed natural gas within California’s South Coast Air Basin using long‐term measurements of ethane and methane. Atmospheric Chemistry and Physics, 16, 14,091 – 14,105. https://doi.org/10.5194/acp‐16‐14091‐2016
dc.identifier.citedreferenceAlvarez, R. A., Zavala‐Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend‐Small, A., Wofsy, S. C., & Hamburg, S. P. ( 2018 ). Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 361, 186 – 188. https://doi.org/10.1126/science.aar7204
dc.identifier.citedreferenceAsefi‐Najafabady, S., Rayner, P. J., Gurney, K. R., McRobert, A., Song, Y., Coltin, K., Huang, J., Elvidge, C., & Baugh, K. ( 2014 ). A multiyear, global gridded fossil fuel CO 2 emission data product: Evaluation and analysis of results. Journal of Geophysical Research: Atmospheres, 119, 10,213 – 10,231. https://doi.org/10.1002/2013JD021296
dc.identifier.citedreferenceBarkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Miles, N. L., Richardson, S. J., Cao, Y., Sweeney, C., Karion, A., Smith, M. K., Kort, E. A., Schwietzke, S., Murphy, T., Cervone, G., Martins, D., & Maasakkers, J. D. ( 2017 ). Quantifying methane emissions from natural gas production in north‐eastern Pennsylvania. Atmospheric Chemistry and Physics, 17, 13,941 – 13,966. https://doi.org/10.5194/acp‐17‐13941‐2017
dc.identifier.citedreferenceBrandt, A. R., Heath, G. A., Kort, E. A., O’Sullivan, F., Pétron, G., Jordaan, S. M., Tans, P., Wilcox, J., Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardley, D., & Harriss, R. ( 2014 ). Methane leaks from North American natural gas systems. Science, 343, 733 – 735. https://doi.org/10.1126/science.1247045
dc.identifier.citedreferenceBrioude, J., Angevine, W. M., Ahmadov, R., Kim, S.‐W., Evan, S., McKeen, S. A., Hsie, E. Y., Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., & Trainer, M. ( 2013 ). Top‐down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: Assessing anthropogenic emissions of CO, NO x and CO 2 and their impacts. Atmospheric Chemistry and Physics, 13, 3661 – 3677. https://doi.org/10.5194/acp‐13‐3661‐2013
dc.identifier.citedreferenceCrippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., & Janssens‐Maenhout, G. ( 2018 ). Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth System Science Data, 10, 1987 – 2013. https://doi.org/10.5194/essd‐10‐1987‐2018
dc.identifier.citedreferenceEuropean Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). ( 2013 ). Emission Database for Global Atmospheric Research (EDGAR), release version 4.2 FT2010. Retrieved from edgar.jrc.ec.europa.eu
dc.identifier.citedreferenceEuropean Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). ( 2018 ). Global Air Pollutant Emissions EDGAR v4.3.2. https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR
dc.identifier.citedreferenceFiore, A. M., Jacob, D. J., Field, B. D., Streets, D. G., Fernandes, S. D., & Jang, C. ( 2002 ). Linking ozone pollution and climate change: The case for controlling methane. Geophysical Research Letters, 29 ( 19 ), 1919. https://doi.org/10.1029/2002GL015601
dc.identifier.citedreferenceFischer, M. L., Chan, W. R., Delp, W., Jeong, S., Rapp, V., & Zhu, Z. ( 2018 ). An estimate of natural gas methane emissions from California homes. Environmental Science & Technology, 52 ( 17 ), 10,205 – 10,213. https://doi.org/10.1021/acs.est.8b03217
dc.identifier.citedreferenceGately, C., & Hutyra, L. R. ( 2018 ). CMS: CO 2 emissions from fossil fuels combustion, ACES Inventory for Northeastern USA. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1501
dc.identifier.citedreferenceJackson, R. B., Down, A., Phillips, N. G., Ackley, R. C., Cook, C. W., Plata, D. L., & Zhao, K. ( 2014 ). Natural gas pipeline leaks across Washington, DC. Environmental Science & Technology, 48 ( 3 ), 2051 – 2058. https://doi.org/10.1021/es404474x
dc.identifier.citedreferenceJanssens‐Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., & Petrescu, A. M. R. ( 2017 ). EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth System Science Data Discussions, 1 – 55. https://doi.org/10.5194/essd‐2017‐79
dc.identifier.citedreferenceKort, E. A., Frankenberg, C., Costigan, K. R., Lindenmaier, R., Dubey, M. K., & Wunch, D. ( 2014 ). Four corners: The largest US methane anomaly viewed from space. Geophysical Research Letters, 41, 6898 – 6903. https://doi.org/10.1002/2014GL061503
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.