Show simple item record

The immune repressor BIR1 contributes to antiviral defense and undergoes transcriptional and post-transcriptional regulation during viral infections

dc.contributor.authorGuzmán‐benito, Irene
dc.contributor.authorDonaire, Livia
dc.contributor.authorAmorim‐silva, Vítor
dc.contributor.authorVallarino, José G.
dc.contributor.authorEsteban, Alicia
dc.contributor.authorWierzbicki, Andrzej T.
dc.contributor.authorRuiz‐ferrer, Virginia
dc.contributor.authorLlave, César
dc.date.accessioned2019-09-30T15:31:08Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-09-30T15:31:08Z
dc.date.issued2019-10
dc.identifier.citationGuzmán‐benito, Irene ; Donaire, Livia; Amorim‐silva, Vítor ; Vallarino, José G. ; Esteban, Alicia; Wierzbicki, Andrzej T.; Ruiz‐ferrer, Virginia ; Llave, César (2019). "The immune repressor BIR1 contributes to antiviral defense and undergoes transcriptional and post-transcriptional regulation during viral infections." New Phytologist 224(1): 421-438.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/151296
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpost-transcriptional silencing
dc.subject.otherRNA-directed DNA methylation
dc.subject.otherSOBIR1
dc.subject.otherplant innate immunity
dc.subject.otherBIR1
dc.subject.otherBAK1
dc.subject.otherantiviral defense
dc.subject.otherplant viruses
dc.titleThe immune repressor BIR1 contributes to antiviral defense and undergoes transcriptional and post-transcriptional regulation during viral infections
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151296/1/nph15931_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151296/2/nph15931-sup-0001-SupInfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151296/3/nph15931.pdf
dc.identifier.doi10.1111/nph.15931
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceOuyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA. 2014. MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathogens 10: e1004464.
dc.identifier.citedreferenceMarques-Bueno MDM, Morao AK, Cayrel A, Platre MP, Barberon M, Caillieux E, Colot V, Jaillais Y, Roudier F, Vert G. 2016. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. The Plant Journal 85: 320 - 333.
dc.identifier.citedreferenceMartin GB, Bogdanove AJ, Sessa G. 2003. Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology 54: 23 - 61.
dc.identifier.citedreferenceMayers CN, Lee KC, Moore CA, Wong SM, Carr JP. 2005. Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Molecular Plant-Microbe Interactions 18: 428 - 434.
dc.identifier.citedreferenceMeyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15: 809 - 834.
dc.identifier.citedreferenceNavarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436 - 439.
dc.identifier.citedreferenceNavarro L, Jay F, Nomura K, He SY, Voinnet O. 2008. Suppression of the microRNA pathway by bacterial effector proteins. Science 321: 964 - 967.
dc.identifier.citedreferenceNicaise V, Candresse T. 2017. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity. Molecular Plant Pathology 18: 878 - 886.
dc.identifier.citedreferencePatterson K, Molloy L, Qu W, Clark S. 2011. DNA methylation: bisulphite modification and analysis. Journal of Visualized Experiments: JoVE 56: 3170.
dc.identifier.citedreferencePrelich G. 2012. Gene overexpression: uses, mechanisms, and interpretation. Genetics 190: 841 - 854.
dc.identifier.citedreferenceQi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. 2018. Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Molecular Plant 11: 1427 - 1439.
dc.identifier.citedreferenceRodriguez E, El Ghoul H, Mundy J, Petersen M. 2016. Making sense of plant autoimmunity and -negative regulators-. FEBS Journal 283: 1385 - 1391.
dc.identifier.citedreferenceRowley MJ, Avrutsky MI, Sifuentes CJ, Pereira L, Wierzbicki AT. 2011. Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genetics 7: e1002120.
dc.identifier.citedreferenceSchwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A, Zipfel C. 2011. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genetics 7: e1002046.
dc.identifier.citedreferenceShivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. 2012. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24: 859 - 874.
dc.identifier.citedreferenceStroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. 2013. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152: 352 - 364.
dc.identifier.citedreferenceTakahashi Y, Nasir KH, Ito A, Kanzaki H, Matsumura H, Saitoh H, Fujisawa S, Kamoun S, Terauchi R. 2007. A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. The Plant Journal 49: 1030 - 1040.
dc.identifier.citedreferenceTena G, Boudsocq M, Sheen J. 2011. Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology 14: 519 - 529.
dc.identifier.citedreferenceVallarino JG, Osorio S. 2016. Simultaneous determination of plant hormones by GC-TOF-MS. Methods in Molecular Biology 1363: 229 - 237.
dc.identifier.citedreferenceWierzbicki AT, Cocklin R, Mayampurath A, Lister R, Rowley MJ, Gregory BD, Ecker JR, Tang H, Pikaard CS. 2012. Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes & Development 26: 1825 - 1836.
dc.identifier.citedreferenceWildermuth MC, Dewdney J, Wu G, Ausubel FM. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562 - 565.
dc.identifier.citedreferenceWu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1: 639 - 647.
dc.identifier.citedreferenceXiao YL, Redman JC, Monaghan EL, Zhuang J, Underwood BA, Moskal WA, Wang W, Wu HC, Town CD. 2010. High throughput generation of promoter reporter (GFP) transgenic lines of low expressing genes in Arabidopsis and analysis of their expression patterns. Plant Methods 6: 18.
dc.identifier.citedreferenceXie M, Yu B. 2015. siRNA-directed DNA methylation in plants. Current Genomics 16: 23 - 31.
dc.identifier.citedreferenceYi H, Richards EJ. 2007. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19: 2929 - 2939.
dc.identifier.citedreferenceYu A, Lepere G, Jay F, Wang J, Bapaume L, Wang Y, Abraham AL, Penterman J, Fischer RL, Voinnet O et al. 2013. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proceedings of the National Academy of Sciences, USA 110: 2389 - 2394.
dc.identifier.citedreferenceZhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA et al. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes & Development 25: 2540 - 2553.
dc.identifier.citedreferenceZhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H. 2011. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Molecular Cell 42: 356 - 366.
dc.identifier.citedreferenceZvereva AS, Pooggin MM. 2012. Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4: 2578 - 2597.
dc.identifier.citedreferenceAddo-Quaye C, Miller W, Axtell MJ. 2009. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25: 130 - 131.
dc.identifier.citedreferenceBoccara M, Sarazin A, Thiebeauld O, Jay F, Voinnet O, Navarro L, Colot V. 2014. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathogens 10: e1003883.
dc.identifier.citedreferenceBohmdorfer G, Rowley MJ, Kucinski J, Zhu Y, Amies I, Wierzbicki AT. 2014. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA. The Plant Journal 79: 181 - 191.
dc.identifier.citedreferenceBohmdorfer G, Sethuraman S, Rowley MJ, Krzyszton M, Rothi MH, Bouzit L, Wierzbicki AT. 2016. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. eLife 5: e19092.
dc.identifier.citedreferenceBoller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60: 379 - 406.
dc.identifier.citedreferenceBouche N, Lauressergues D, Gasciolli V, Vaucheret H. 2006. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO Journal 25: 3347 - 3356.
dc.identifier.citedreferenceCampo S, Peris-Peris C, Sire C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B. 2013. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 ( Natural resistance-associated macrophage protein 6 ) gene involved in pathogen resistance. New Phytologist 199: 212 - 227.
dc.identifier.citedreferenceCao H, Glazebrook J, Clarke JD, Volko S, Dong X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57 - 63.
dc.identifier.citedreferenceCao M, Du P, Wang X, Yu YQ, Qiu YH, Li W, Gal-On A, Zhou C, Li Y, Ding SW. 2014. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proceedings of the National Academy of Sciences, USA 111: 14613 - 14618.
dc.identifier.citedreferenceCao X, Jacobsen SE. 2002. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proceedings of the National Academy of Sciences, USA 99 ( Suppl 4 ): 16491 - 16498.
dc.identifier.citedreferenceChan SW, Henderson IR, Zhang X, Shah G, Chien JS, Jacobsen SE. 2006. RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in arabidopsis. PLoS Genetics 2: e83.
dc.identifier.citedreferenceChen Z, Zheng Z, Huang J, Lai Z, Fan B. 2009. Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior 4: 493 - 496.
dc.identifier.citedreferenceChinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497 - 500.
dc.identifier.citedreferenceChivasa S, Murphy AM, Naylor M, Carr JP. 1997. Salicylic acid interferes with Tobacco Mosaic Virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell 9: 547 - 557.
dc.identifier.citedreferenceClough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 735 - 743.
dc.identifier.citedreferenceColl NS, Epple P, Dangl JL. 2011. Programmed cell death in the plant immune system. Cell Death and Differentiation 18: 1247 - 1256.
dc.identifier.citedreferenceDangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826 - 833.
dc.identifier.citedreferenceDiaz-Tielas C, Grana E, Sotelo T, Reigosa MJ, Sanchez-Moreiras AM. 2012. The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant, Cell & Environment 35: 1500 - 1517.
dc.identifier.citedreferenceDodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11: 539 - 548.
dc.identifier.citedreferenceDominguez-Ferreras A, Kiss-Papp M, Jehle AK, Felix G, Chinchilla D. 2015. An overdose of the Arabidopsis coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or its ectodomain causes autoimmunity in a SUPPRESSOR OF BIR1-1-dependent manner. Plant Physiology 168: 1106 - 1121.
dc.identifier.citedreferenceDonaire L, Pedrola L, de la Rosa R, Llave C. 2011. High-throughput sequencing of RNA silencing-associated small RNAs in olive ( Olea europaea L.). PLoS ONE 6: e27916.
dc.identifier.citedreferenceDowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR. 2012. Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences, USA 109: E2183 - E2191.
dc.identifier.citedreferenceFernandez-Calvino L, Guzman-Benito I, Del Toro FJ, Donaire L, Castro-Sanz AB, Ruiz-Ferrer V, Llave C. 2016a. Activation of senescence-associated Dark-inducible ( DIN ) genes during infection contributes to enhanced susceptibility to plant viruses. Molecular Plant Pathology 17: 3 - 15.
dc.identifier.citedreferenceFernandez-Calvino L, Martinez-Priego L, Szabo EZ, Guzman-Benito I, Gonzalez I, Canto T, Lakatos L, Llave C. 2016b. Tobacco rattle virus 16K silencing suppressor binds ARGONAUTE 4 and inhibits formation of RNA silencing complexes. Journal of General Virology 97: 246 - 257.
dc.identifier.citedreferenceFernandez-Calvino L, Osorio S, Hernandez ML, Hamada IB, Del Toro FJ, Donaire L, Yu A, Bustos R, Fernie AR, Martinez-Rivas JM et al. 2014. Virus-induced alterations in primary metabolism modulate susceptibility to Tobacco rattle virus in Arabidopsis. Plant Physiology 166: 1821 - 1838.
dc.identifier.citedreferenceGao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X et al. 2009. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host & Microbe 6: 34 - 44.
dc.identifier.citedreferenceGerman MA, Luo S, Schroth G, Meyers BC, Green PJ. 2009. Construction of parallel analysis of RNA ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nature Protocols 4: 356 - 362.
dc.identifier.citedreferenceGerman MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R et al. 2008. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnology 26: 941 - 946.
dc.identifier.citedreferenceGouveia BC, Calil IP, Machado JP, Santos AA, Fontes EP. 2016. Immune receptors and co-receptors in antiviral innate immunity in plants. Frontiers in Microbiology 7: 2139.
dc.identifier.citedreferenceHalter T, Imkampe J, Mazzotta S, Wierzba M, Postel S, Bucherl C, Kiefer C, Stahl M, Chinchilla D, Wang X et al. 2014. The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Current Biology 24: 134 - 143.
dc.identifier.citedreferenceHe XF, Fang YY, Feng L, Guo HS. 2008. Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Letters 582: 2445 - 2452.
dc.identifier.citedreferenceHe XJ, Hsu YF, Pontes O, Zhu J, Lu J, Bressan RA, Pikaard C, Wang CS, Zhu JK. 2009. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes & Development 23: 318 - 330.
dc.identifier.citedreferenceHeese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences, USA 104: 12217 - 12222.
dc.identifier.citedreferenceImkampe J, Halter T, Huang S, Schulze S, Mazzotta S, Schmidt N, Manstretta R, Postel S, Wierzba M, Yang Y et al. 2017. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1. Plant Cell 29: 2285 - 2303.
dc.identifier.citedreferenceIshihara T, Sekine KT, Hase S, Kanayama Y, Seo S, Ohashi Y, Kusano T, Shibata D, Shah J, Takahashi H. 2008. Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses. Plant Biology (Stuttgart, Germany) 10: 451 - 461.
dc.identifier.citedreferenceJohansen LK, Carrington JC. 2001. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium -mediated transient expression system. Plant Physiology 126: 930 - 938.
dc.identifier.citedreferenceJones JD, Dangl JL. 2006. The plant immune system. Nature 444: 323 - 329.
dc.identifier.citedreferenceKatiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. 2007. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes & Development 21: 3123 - 3134.
dc.identifier.citedreferenceKatiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin H. 2006. A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences, USA 103: 18002 - 18007.
dc.identifier.citedreferenceKorner CJ, Klauser D, Niehl A, Dominguez-Ferreras A, Chinchilla D, Boller T, Heinlein M, Hann DR. 2013. The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Molecular Plant-Microbe Interactions 26: 1271 - 1280.
dc.identifier.citedreferenceLellis AD, Kasschau KD, Whitham SA, Carrington JC. 2002. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Current Biology 12: 1046 - 1051.
dc.identifier.citedreferenceLi F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B. 2012. MicroRNA regulation of plant innate immune receptors. Proceedings of the National Academy of Sciences, USA 109: 1790 - 1795.
dc.identifier.citedreferenceLi Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, Guo XY, Zhang Y, Fan J, Zhao JQ et al. 2014. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology 164: 1077 - 1092.
dc.identifier.citedreferenceLi Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM. 2010. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiology 152: 2222 - 2231.
dc.identifier.citedreferenceLiu Y, Huang X, Li M, He P, Zhang Y. 2016. Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1. New Phytologist 212: 637 - 645.
dc.identifier.citedreferenceLiu Y, Schiff M, Marathe R, Dinesh-Kumar SP. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to Tobacco mosaic virus. The Plant Journal 30: 415 - 429.
dc.identifier.citedreferenceLopez Sanchez A, Stassen JH, Furci L, Smith LM, Ton J. 2016. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. The Plant Journal 88: 361 - 374.
dc.identifier.citedreferenceLorrain S, Vailleau F, Balague C, Roby D. 2003. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends in Plant Science 8: 263 - 271.
dc.identifier.citedreferenceMa C, Liu Y, Bai B, Han Z, Tang J, Zhang H, Yaghmaiean H, Zhang Y, Chai J. 2017. Structural basis for BIR1-mediated negative regulation of plant immunity. Cell Research 27: 1521 - 1524.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.