Show simple item record

A Statistical Study of the Force Balance and Structure in the Flux Ropes in Mercury’s Magnetotail

dc.contributor.authorZhao, J. T.
dc.contributor.authorSun, W.‐j.
dc.contributor.authorZong, Q. G.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorZhou, X. Z.
dc.contributor.authorDewey, R. M.
dc.contributor.authorPoh, G. K.
dc.contributor.authorRaines, J. M.
dc.date.accessioned2019-09-30T15:31:22Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:31:22Z
dc.date.issued2019-07
dc.identifier.citationZhao, J. T.; Sun, W.‐j. ; Zong, Q. G.; Slavin, J. A.; Zhou, X. Z.; Dewey, R. M.; Poh, G. K.; Raines, J. M. (2019). "A Statistical Study of the Force Balance and Structure in the Flux Ropes in Mercury’s Magnetotail." Journal of Geophysical Research: Space Physics 124(7): 5143-5157.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/151305
dc.description.abstractThis study presents a statistical investigation of the force balance and structures in the flux ropes in Mercury’s magnetotail plasma sheet by using the measurements of MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER). One hundred sixty-eight flux ropes were identified from the 14 hot seasons of MESSENGER from 11 March 2011 to 30 April 2015, and 143 of them show clear magnetic field enhancements with the core field being -20% higher than the background magnetic field. The investigation on the force balance of these 143 flux ropes shows that magnetic pressure gradient force cannot be solely balanced by magnetic tension force, implying that thermal plasma pressure gradient force cannot be neglected in the flux ropes. We employ a non-force-free model considering the contribution of thermal pressure to resolve the physical properties of flux ropes in Mercury’s magnetotail. Twenty-eight flux ropes are obtained through the fitting to the non-force-free model. The flux ropes are found to be consistent with the flattened structures, in which the mean semimajor is -851 km and semiminor is -333 km, both are several times the local proton inertial length. The average core field is estimated to be -57.5 nT, and flux content is -0.019 MWb, much larger than the previous results obtained from force-free flux rope model. The importance of thermal pressure gradient in the force balance of the flux ropes and the flattened structure indicates that the flux ropes in Mercury’s magnetotail plasma sheet are mostly in early stage of the evolution, and still contain enough plasma to affect their magnetic structures.Key PointsThermal pressure gradient is significant for the flux ropes in Mercury’s magnetotailNon-force-free modeling reveals the flatten structure and much higher magnetic flux of the flux ropes different from the previous studiesFlux ropes in this study should be in their early stage of evolution and could be strongly affected by thermal pressure
dc.publisherWiley Periodicals, Inc.
dc.subject.othernon-force-free flux rope model
dc.subject.otherflux rope
dc.subject.otherMercury’s magnetotail
dc.subject.otherthermal pressure gradient
dc.titleA Statistical Study of the Force Balance and Structure in the Flux Ropes in Mercury’s Magnetotail
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151305/1/jgra55044_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151305/2/jgra55044.pdf
dc.identifier.doi10.1029/2018JA026329
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1979 ). The effect of erosion on the solar wind stand-off distance at Mercury. Journal of Geophysical Research, 84 ( A5 ), 2076 - 2082. https://doi.org/10.1029/JA084iA05p02076
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., TrávnÃ­Ä ek, P., & Zurbuchen, T. H. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 - 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Nittler, L. R., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Starr, R. D., TrávnÃ­Ä k, P. M., & Zurbuchen, T. H. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 - 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt Jr, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., TrávnÃ­Ä k, P., & Zurbuchen, T. H. ( 2012 ). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. Journal of Geophysical Research, 117, A01215. https://doi.org/10.1029/2011JA016900
dc.identifier.citedreferenceSlavin, J. A., Baker, D. N., Craven, J. D., Elphic, R. C., Fairfield, D. H., Frank, L. A., Galvin, A. B., Hughes, W. J., Manka, R. H., Mitchell, D. G., Richardson, I. G., Sanderson, T. R., Sibeck, D. J., Smith, E. J., & Zwickl, R. D. ( 1989 ). CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment. Journal of Geophysical Research, 94 ( A11 ), 15,153 - 15,175. https://doi.org/10.1029/JA094iA11p15153
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K.-H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L., & Solomon, S. C. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 - 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., Nieves-Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Johnson, C. L., Winslow, R. M., Killen, R. M., McNutt Jr, R. L., & Solomon, S. C. ( 2012 ). MESSENGER observations of a flux-transfer-event shower at Mercury. Journal of Geophysical Research, 117, A00M06. https://doi.org/10.1029/2012JA017926
dc.identifier.citedreferenceSlavin, J. A., Krimigis, S. M., Acuña, M. H., Anderson, B. J., Baker, D. N., Koehn, P. L., Korth, H., Livi, S., Mauk, B. H., Solomon, S. C., & Zurbuchen, T. H. ( 2007 ). MESSENGER: Exploring Mercury’s magnetosphere. Space Science Reviews, 131 ( 1 ), 133 - 160. https://doi.org/10.1007/s11214-007-9154-x
dc.identifier.citedreferenceSlavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M., Owen, C. J., Moldwin, M. B., Nagai, T., Ieda, A., & Mukai, T. ( 2003 ). Geotail observations of magnetic flux ropes in the plasma sheet. Journal of Geophysical Research, 108 ( A1 ), SMP 10 - 1-SMP-10-18. https://doi.org/10.1029/2002JA009557
dc.identifier.citedreferenceSlavin, J. A., Tanskanen, E. I., Hesse, M., Owen, C. J., Dunlop, M. W., Imber, S., Lucek, E. A., Balogh, A., & Glassmeier, K.-H. ( 2005 ). Cluster observations of traveling compression regions in the near-tail. Journal of Geophysical Research, 110, A06207. https://doi.org/10.1029/2004JA010878
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Poh, G.-K., & Fear, R. C. ( 2017 ). Flux ropes in the Hermean magnetotail: Distribution, properties, and formation. Journal of Geophysical Research: Space Physics, 122, 8136 - 8153. https://doi.org/10.1002/2017JA024295
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Gold, R. E., Acuña, M. H., Baker, D. N., Boynton, W. V., Chapman, C. R., Cheng, A. F., Gloeckler, G., Head III, J. W., Krimigis, S. M., McClintock, W. E., Murchie, S. L., Peale, S. J., Phillips, R. J., Robinson, M. S., Slavin, J. A., Smith, D. E., Strom, R. G., Trombka, J. I., & Zuber, M. T. ( 2001 ). The MESSENGER mission to Mercury: Scientific objectives and implementation. Planetary and Space Science, 49 ( 14 ), 1445 - 1465. https://doi.org/10.1016/S0032-0633(01)00085-X, returns to Mercury.
dc.identifier.citedreferenceSonnerup, B. U. O., & Cahill, L. J. ( 1967 ). Magnetopause structure and attitude from Explorer 12 observations. Journal of Geophysical Research, 72 ( 1 ), 171 - 183. https://doi.org/10.1029/JZ072i001p00171
dc.identifier.citedreferenceSonnerup, B. U. O., & Scheible, M. ( 1998 ). Minimum and maximum variance analysis. Analysis methods for multi-spacecraft data (pp. 185-220 ).
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 121, 7590 - 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceSun, W. J., Raines, J. M., Fu, S. Y., Slavin, J. A., Wei, Y., Poh, G. K., Pu, Z. Y., Yao, Z. H., Zong, Q. G., & Wan, W. X. ( 2017 ). MESSENGER observations of the energization and heating of protons in the near-Mercury magnetotail. Geophysical Research Letters, 44, 8149 - 8158. https://doi.org/10.1002/2017GL074276
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Raines, J. M., Fu, S. Y., Wei, Y., Karlsson, T., Poh, G. K., Jia, X., Gershman, D. J., Zong, Q. G., Wan, W. X., Shi, Q. Q., Pu, Z. Y., & Zhao, D. ( 2018 ). A comparative study of the proton properties of magnetospheric substorms at Earth and Mercury in the near magnetotail. Geophysical Research Letters, 45, 7933 - 7941. https://doi.org/10.1029/2018GL079181
dc.identifier.citedreferenceSun, W.-J., Slavin, J. A., Fu, S., Raines, J. M., Sundberg, T., Zong, Q.-G., Jia, X., Shi, Q., Shen, X., Poh, G., Pu, Z., & Zurbuchen, T. H. ( 2015b ). MESSENGER observations of Alfvénic and compressional waves during Mercury’s substorms. Geophysical Research Letters, 42, 6189 - 6198. https://doi.org/10.1002/2015GL065452
dc.identifier.citedreferenceSun, W.-J., Slavin, J. A., Fu, S., Raines, J. M., Zong, Q.-G., Imber, S. M., Shi, Q., Yao, Z., Poh, G., Gershman, D. J., Pu, Z., Sundberg, T., Anderson, B. J., Korth, H., & Baker, D. N. ( 2015a ). MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophysical Research Letters, 42, 3692 - 3699. https://doi.org/10.1002/2015GL064052
dc.identifier.citedreferenceTaylor, J. B. ( 1986 ). Relaxation and magnetic reconnection in plasmas. Reviews of Modern Physics, 58, 741 - 763. https://doi.org/10.1103/RevModPhys.58.741
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N., & Solomon, S. C. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 - 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceZhao, C., Russell, C. T., Strangeway, R. J., Petrinec, S. M., Paterson, W. R., Zhou, M., Anderson, B. J., Baumjohann, W., Bromund, K. R., Chutter, M., Fischer, D., Le, G., Nakamura, R., Plaschke, F., Slavin, J. A., Torbert, R. B., & Wei, H. Y. ( 2016 ). Force balance at the magnetopause determined with MMS: Application to flux transfer events. Geophysical Research Letters, 43, 11,941 - 11,947. https://doi.org/10.1002/2016GL071568
dc.identifier.citedreferenceZhong, J., Wan, W. X., Slavin, J. A., Wei, Y., Lin, R. L., Chai, L. H., Raines, J. M., Rong, Z. J., & Han, X. H. ( 2015 ). Mercury’s three-dimensional asymmetric magnetopause. Journal of Geophysical Research: Space Physics, 120, 7658 - 7671. https://doi.org/10.1002/2015JA021425
dc.identifier.citedreferenceZhong, J., Wei, Y., Pu, Z. Y., Wang, X. G., Wan, W. X., Slavin, J. A., Cao, X., Raines, J. M., Zhang, H., Xiao, C. J., Du, A. M., Wang, R. S., Dewey, R. M., Chai, L. H., Rong, Z. J., & Li, Y. ( 2018 ). MESSENGER observations of rapid and impulsive magnetic reconnection in Mercury’s magnetotail. The Astrophysical Journal Letters, 860 ( 2 ), L20.
dc.identifier.citedreferenceZong, Q.-G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H., Lui, A. T., Vogiatzis, I., Glassmeier, K.-H., Korth, A., Daly, P. W., Balogh, A., & Reme, H. ( 2004 ). Cluster observations of earthward flowing plasmoid in the tail. Geophysical Research Letters, 31, L18803. https://doi.org/10.1029/2004GL020692
dc.identifier.citedreferenceZong, Q.-G., Fritz, T., Spence, H., Dunlop, M., Pu, Z., Korth, A., Daly, P., Balogh, A., & Reme, H. ( 2003 ). Bursty energetic electrons confined in flux ropes in the cusp region. Planetary and Space Science, 51 ( 12 ), 821 - 830. https://doi.org/10.1016/S0032-0633(03)00116-8, key Problems in Space Physics: Thin Magnetospheric Boundaries.
dc.identifier.citedreferenceZong, Q.-G., Wilken, B., Reeves, G. D., Daglis, I. A., Doke, T., Iyemori, T., Livi, S., Maezawa, K., Mukai, T., Kokubun, S., Pu, Z.-Y., Ullaland, S., Woch, J., Lepping, R., & Yamamoto, T. ( 1997 ). Geotail observations of energetic ion species and magnetic field in plasmoid-like structures in the course of an isolated substorm event. Journal of Geophysical Research, 102 ( A6 ), 11,409 - 11,428. https://doi.org/10.1029/97JA00076
dc.identifier.citedreferenceAlexeev, I. I., Belenkaya, E. S., Slavin, J. A., Korth, H., Anderson, B. J., Baker, D. N., Boardsen, S. A., Johnson, C. L., Purucker, M. E., Sarantos, M., & Solomon, S. C. ( 2010 ). Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 209 ( 1 ), 23 - 39. https://doi.org/10.1016/j.icarus.2010.01.024, Mercury after Two MESSENGER Flybys.
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Korth, H., Slavin, J. A., Uno, H., Johnson, C. L., Purucker, M. E., Solomon, S. C., Raines, J. M., Zurbuchen, T. H., Gloeckler, G., & McNutt, R. L. ( 2010 ). The magnetic field of Mercury. Space Science Reviews, 152 ( 1 ), 307 - 339. https://doi.org/10.1007/s11214-009-9544-3
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The Magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1 ), 417 - 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L., Raines, J. M., & Zurbuchen, T. H. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 - 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A., & Raines, J. M. ( 2007 ). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1 ), 523 - 556. https://doi.org/10.1007/s11214-007-9272-5
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ). Magnetic clouds and force-free fields with constant alpha. Journal of Geophysical Research, 93 ( A7 ), 7217 - 7224. https://doi.org/10.1029/JA093iA07p07217
dc.identifier.citedreferenceChen, Y., Tóth, G., Cassak, P., Jia, X., Gombosi, T. I., Slavin, J. A., Markidis, S., Peng, I. B., Jordanova, V. K., & Henderson, M. G. ( 2017 ). Global three-dimensional simulation of Earth’s dayside reconnection using a two-way coupled magnetohydrodynamics with embedded particle-in-cell model: Initial results. Journal of Geophysical Research: Space Physics, 122, 10,318 - 10,335. https://doi.org/10.1002/2017JA024186
dc.identifier.citedreferenceDewey, R. M., Raines, J. M., Sun, W., Slavin, J. A., & Poh, G. ( 2018 ). MESSENGER observations of fast plasma flows in Mercury’s magnetotail. Geophysical Research Letters, 45, 10,110 - 10,118. https://doi.org/10.1029/2018GL079056
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. ( 2017 ). Energetic electron acceleration and injection during dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 122, 12,170 - 12,188. https://doi.org/10.1002/2017JA024617
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L., & Solomon S. C. ( 2015 ). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planetary and Space Science, 115, 77 - 89. https://doi.org/10.1016/j.pss.2014.12.016, solar wind interaction with the terrestrial planets.
dc.identifier.citedreferenceDing, Y., & Rong, Z. J. ( 2018 ). A statistical survey on the magnetic field distribution in Mercury’s magnetotail current sheet based on MESSENGER observations. Chinese Journal of Geophysics, 61 ( 2 ), 411 - 422. https://doi.org/10.6038/cjg2018L0225
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.-J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017a ). Coupling between Mercury and its nightside magnetosphere: Cross-tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 - 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferenceFarrugia, C. J., Lavraud, B., Torbert, R. B., Argall, M., Kacem, I., Yu, W., Alm, L., Burch, J., Russell, C. T., Shuster, J., Dorelli, J., Eastwood, J. P., Ergun, R. E., Fuselier, S., Gershman, D., Giles, B. L., Khotyaintsev, Y. V., Lindqvist, P. A., Matsui, H., Marklund, G. T., Phan, T. D., Paulson, K., Pollock, C., & Strangeway, R. J. ( 2016 ). Magnetospheric Multiscale mission observations and non-force free modeling of a flux transfer event immersed in a super-Alfvénic flow. Geophysical Research Letters, 43, 6070 - 6077. https://doi.org/10.1002/2016GL068758
dc.identifier.citedreferenceFear, R. C., Trenchi, L., Coxon, J. C., & Milan, S. E. ( 2017 ). How much flux does a flux transfer event transfer? Journal of Geophysical Research: Space Physics, 122, 12,310 - 12,327. https://doi.org/10.1002/2017JA024730
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118, 7181 - 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2014 ). Ion kinetic properties in Mercury’s pre-midnight plasma sheet. Geophysical Research Letters, 41, 5740 - 5747. https://doi.org/10.1002/2014GL060468
dc.identifier.citedreferenceGlassmeier, K.-H. ( 1997 ). The Hermean magnetosphere and its ionosphere-magnetosphere coupling. Planetary and Space Science, 45 ( 1 ), 119 - 125. https://doi.org/10.1016/S0032-0633(96)00095-5
dc.identifier.citedreferenceHarris, E. G. ( 1962 ). On a plasma sheath separating regions of oppositely directed magnetic field. Il Nuovo Cimento, 23 ( 1 ), 115 - 121. https://doi.org/10.1007/BF02733547
dc.identifier.citedreferenceHesse, M., & Birn, J. ( 1991 ). Plasmoid evolution in an extended magnetotail. Journal of Geophysical Research, 96 ( A4 ), 5683 - 5696. https://doi.org/10.1029/90JA02503
dc.identifier.citedreferenceHidalgo, M. A., Cid, C., Viñas, A. F., & Sequeiros, J. ( 2002 ). A non-force-free approach to the topology of magnetic clouds in the solar wind. Journal of Geophysical Research, 107 ( A1 ), SSH1 - 1-SSH-1-7. https://doi.org/10.1029/2001JA900100
dc.identifier.citedreferenceHones, E. W. ( 1977 ). Substorm processes in the magnetotail: Comments on -on hot tenuous plasmas, fireballs, and boundary layers in the Earth’ magnetotail’ by L. A. Frank, K. L. Ackerson, and R. P. Lepping. Journal of Geophysical Research, 82 ( 35 ), 5633 - 5640. https://doi.org/10.1029/JA082i035p05633
dc.identifier.citedreferenceHughes, W. J., & Sibeck, D. G. ( 1987 ). On the 3-dimensional structure of plasmoids. Geophysical Research Letters, 14 ( 6 ), 636 - 639. https://doi.org/10.1029/GL014i006p00636
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 - 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceImber, S. M., Slavin, J. A., Auster, H. U., & Angelopoulos, V. ( 2011 ). A THEMIS survey of flux ropes and traveling compression regions: Location of the near-Earth reconnection site during solar minimum. Journal of Geophysical Research, 116, A02201. https://doi.org/10.1029/2010JA016026
dc.identifier.citedreferenceJackman, C. M., Arridge, C. S., André, N., Bagenal, F., Birn, J., Freeman, M. P., Jia, X., Kidder, A., Milan, S. E., Radioti, A., Slavin, J. A., Vogt, M. F., Volwerk, M., & Walsh, A. P. ( 2014 ). Large-scale structure and dynamics of the magnetotails of Mercury, Earth, Jupiter and Saturn. Space Science Reviews, 182 ( 1 ), 85 - 154. https://doi.org/10.1007/s11214-014-0060-8
dc.identifier.citedreferenceKivelson, M. G., & Khurana, K. K. ( 1995 ). Models of flux ropes embedded in a Harris neutral sheet: Force-free solutions in low and high beta plasmas. Journal of Geophysical Research, 100 ( A12 ), 23,637 - 23,645. https://doi.org/10.1029/95JA01548
dc.identifier.citedreferenceLepping, R. P., Slavin, J. A., Hesse, M., Jones, J. A., & Szabo, A. ( 1996 ). Analysis of magnetotail flux ropes with strong core fields: ISEE 3 observations. Journal of Geomagnetism and Geoelectricity, 48 ( 5-6 ), 589 - 601. https://doi.org/10.5636/jgg.48.589
dc.identifier.citedreferenceLundquist, S. ( 1950 ). Magnetohydrostatic fields. Arkiv för Fysik, 2, 361 - 365.
dc.identifier.citedreferenceMoldwin, M. B., & Hughes, W. J. ( 1991 ). Plasmoids as magnetic flux ropes. Journal of Geophysical Research, 96 ( A8 ), 14,051 - 14,064. https://doi.org/10.1029/91JA01167
dc.identifier.citedreferenceNakamura, T. K. M., Nakamura, R., Narita, Y., Baumjohann, W., & Daughton, W. ( 2016 ). Multi-scale structures of turbulent magnetic reconnection. Physics of Plasmas, 23 ( 5 ), 052116. https://doi.org/10.1063/1.4951025
dc.identifier.citedreferenceNess, N., Behannon, K., Lepping, R., & Whang, Y. ( 1976 ). Observations of Mercury’s magnetic field. Icarus, 28 ( 4 ), 479 - 488. https://doi.org/10.1016/0019-1035(76)90121-4
dc.identifier.citedreferenceOgilvie, K. W., Scudder, J. D., Vasyliunas, V. M., Hartle, R. E., & Siscoe, G. L. ( 1977 ). Observations at the planet Mercury by the plasma electron experiment: Mariner 10. Journal of Geophysical Research, 82 ( 13 ), 1807 - 1824. https://doi.org/10.1029/JA082i013p01807
dc.identifier.citedreferencePaschmann, G., Haerendel, G., Papamastorakis, I., Sckopke, N., Bame, S. J., Gosling, J. T., & Russell, C. T. ( 1982 ). Plasma and magnetic field characteristics of magnetic flux transfer events. Journal of Geophysical Research, 87 ( A4 ), 2159 - 2168. https://doi.org/10.1029/JA087iA04p02159
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.-J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017b ). Mercury’s cross-tail current sheet: Structure, X-line location and stress balance. Geophysical Research Letters, 44, 678 - 686. https://doi.org/10.1002/2016GL071612
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Sun, W.-J., Raines, J. M., Imber, S. M., DiBraccio, G. A., & Gershman, D. J. ( 2018 ). Transport of mass and energy in Mercury’s plasma sheet. Geophysical Research Letters, 45, 12,163 - 12,170. https://doi.org/10.1029/2018GL080601
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L., & Solomon, S. C. ( 2013 ). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. Journal of Geophysical Research: Space Physics, 118, 1604 - 1619. https://doi.org/10.1029/2012JA018073
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Zurbuchen, T. H., Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M., & McNutt, R. L. ( 2011 ). MESSENGER observations of the plasma environment near Mercury. Planetary and Space Science, 59 ( 15 ), 2004 - 2015. https://doi.org/10.1016/j.pss.2011.02.004, Mercury after the MESSENGER flybys.
dc.identifier.citedreferenceRong, Z. J., Ding, Y., Slavin, J. A., Zhong, J., Poh, G., Sun, W. J., Wei, Y., Chai, L. H., Wan, W. X., & Shen, C. ( 2018 ). The magnetic field structure of Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 123, 548 - 566. https://doi.org/10.1002/2017JA024923
dc.identifier.citedreferenceRussell, C., Baker, D., & Slavin, J. ( 1988 ). The magnetosphere of Mercury. Mercury, 514-561.
dc.identifier.citedreferenceRussell, C. T., & Walker, R. J. ( 1985 ). Flux transfer events at Mercury. Journal of Geophysical Research, 90 ( A11 ), 11,067 - 11,074. https://doi.org/10.1029/JA090iA11p11067
dc.identifier.citedreferenceSchindler, K. ( 1974 ). A theory of the substorm mechanism. Journal of Geophysical Research, 79 ( 19 ), 2803 - 2810. https://doi.org/10.1029/JA079i019p02803
dc.identifier.citedreferenceSchindler, K., Pfirsch, D., & Wobig, H. ( 1973 ). Stability of two-dimensional collision-free plasmas. Plasma Physics, 15 ( 12 ), 1165.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.