Show simple item record

Global MHD simulations of the Response of Jupiter’s Magnetosphere and Ionosphere to Changes in the Solar Wind and IMF

dc.contributor.authorSarkango, Yash
dc.contributor.authorJia, Xianzhe
dc.contributor.authorToth, Gabor
dc.date.accessioned2019-09-30T15:31:37Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:31:37Z
dc.date.issued2019-07
dc.identifier.citationSarkango, Yash; Jia, Xianzhe; Toth, Gabor (2019). "Global MHD simulations of the Response of Jupiter’s Magnetosphere and Ionosphere to Changes in the Solar Wind and IMF." Journal of Geophysical Research: Space Physics 124(7): 5317-5341.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/151316
dc.description.abstractWe have developed a new global magnetohydrodynamic (MHD) model for Jupiter’s magnetosphere based on the BATSRUS code and an ionospheric electrodynamics solver. Our model includes the Io plasma torus at its appropriate location and couples the global magnetosphere with the planetary ionosphere through field‐aligned currents. Through comparisons with available particle and field observations as well as empirical models, we show that the model captures the overall configuration of the magnetosphere reasonably well. In order to understand how the magnetosphere responds to different solar wind drivers, we have carried out time‐dependent simulations using various kinds of upstream conditions, such as a forward shock and a rotation in the interplanetary magnetic field (IMF). Our model predicts that compression of the magnetosphere by a forward shock of typical strength generally weakens the corotation enforcement currents on the dayside and produces an enhancement on the nightside. However, the global response varies depending on the IMF orientation. A forward shock with a typical Parker‐spiral IMF configuration has a larger impact on the magnetospheric configuration and large‐scale current systems than with a parallel IMF configuration. Plasmoids are found to form in the simulation due to tail reconnection and have complex magnetic topology, as they evolve and propagate down tail. For a fixed mass input rate in the Io plasma torus, the frequency of plasmoid occurrence in our simulation is found to vary depending on the upstream solar wind driving.Key PointsA new global MHD model is introduced for Jupiter’s magnetosphere that self‐consistently includes the Io plasma torus at the right locationTime‐dependent simulations show that the global magnetosphere responds differently to different types of drivers in the solar windPlasmoids form in the tail with occurrence frequency dependent on the external driving
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherJupiter
dc.subject.otherplasmoid
dc.subject.otheraurora
dc.subject.othersimulation
dc.subject.othermagnetosphere
dc.subject.otherMHD
dc.titleGlobal MHD simulations of the Response of Jupiter’s Magnetosphere and Ionosphere to Changes in the Solar Wind and IMF
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151316/1/jgra55090.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151316/2/jgra55090_am.pdf
dc.identifier.doi10.1029/2019JA026787
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. L. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferenceOgino, T., Walker, R. J., & Kivelson, M. G. ( 1998 ). A global magnetohydrodynamic simulation of the Jovian magnetosphere. Journal of Geophysical Research, 103 ( A1 ), 225 – 235. https://doi.org/10.1029/97JA02247
dc.identifier.citedreferencePontius, D. H. Jr. ( 1997 ). Radial mass transport and rotational dynamics. Journal of Geophysical Research, 102 ( A4 ), 7137 – 7150. https://doi.org/10.1029/97JA00289
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., & DeZeeuw, D. L. ( 2004 ). Ionospheric control of the magnetosphere: conductance. Annales Geophysicae, 22 ( 2 ), 567 – 584. https://doi.org/10.5194/angeo‐22‐567‐2004
dc.identifier.citedreferenceSchreier, R., Eviatar, A., & Vasyliūnas, V. M. ( 1998 ). A two‐dimensional model of plasma transport and chemistry in the Jovian magnetosphere. Journal of Geophysical Research, 103 ( E9 ), 19901 – 19913. https://doi.org/10.1029/98JE00697
dc.identifier.citedreferenceSlavin, J. A., Smith, E. J., Spreiter, J. R., & Stahara, S. S. ( 1985 ). Solar wind flow about the outer planets: Gas dynamic modeling of the Jupiter and Saturn bow shocks. Journal of Geophysical Research, 90 ( A7 ), 6275 – 6286. https://doi.org/10.1029/JA090iA07p06275
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 2001 ). A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. Journal of Geophysical Research, 106 ( A4 ), 6123 – 6130. https://doi.org/10.1029/2000JA000236
dc.identifier.citedreferenceStrobel, D., & Atreya, S. ( 1983 ). Ionosphere. In A. Dessler (Ed.), Physics of the Jovian magnetosphere, Cambridge Planetary Science Old, (pp. 51 – 67 ). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511564574.004
dc.identifier.citedreferenceSulaiman, A. H., Jia, X., Achilleos, N., Sergis, N., Gurnett, D. A., & Kurth, W. S. ( 2017 ). Large‐scale solar wind flow around Saturn’s nonaxisymmetric magnetosphere. Journal of Geophysical Research: Space Physics, 122, 9198 – 9206. https://doi.org/10.1002/2017JA024595
dc.identifier.citedreferenceSulaiman, A. H., Masters, A., Dougherty, M. K., & Jia, X. ( 2014 ). The magnetic structure of Saturn’s magnetosheath. Journal of Geophysical Research: Space Physics, 119, 5651 – 5661. https://doi.org/10.1002/2014JA020019
dc.identifier.citedreferenceTao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., & Yokoyama, T. ( 2005 ). Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. Journal of Geophysical Research, 110, A11208. https://doi.org/10.1029/2004JA010959
dc.identifier.citedreferenceTóth, G., De Zeeuw, D. L., Gombosi, T. I., & Powell, K. G. ( 2006 ). A parallel explicit/implicit time stepping scheme on block‐adaptive grids. Journal of Computational Physics, 217 ( 2 ), 722 – 758. https://doi.org/10.1016/j.jcp.2006.01.029
dc.identifier.citedreferenceTóth, G., Meng, X., Gombosi, T. I., & Ridley, A. J. ( 2011 ). Reducing numerical diffusion in magnetospheric simulations. Journal of Geophysical Research, 116, A07211. https://doi.org/10.1029/2010JA016370
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., de Zeeuw, D. L., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y. J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceVasyliunas, V. M. ( 1983 ). Plasma distribution and flow. Physics of the Jovian Magnetosphere, 395 – 453. https://doi.org/10.1017/CBO9780511564574.013
dc.identifier.citedreferenceVogt, M. F., Jackman, C. M., Slavin, J. A., Bunce, E. J., Cowley, S. W. H., Kivelson, M. G., & Khurana, K. K. ( 2014 ). Structure and statistical properties of plasmoids in Jupiter’s magnetotail. Journal of Geophysical Research: Space Physics, 119, 821 – 843. https://doi.org/10.1002/2013JA019393
dc.identifier.citedreferenceVogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., & Walker, R. J. ( 2010 ). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. Journal of Geophysical Research, 115, A06219. https://doi.org/10.1029/2009JA015098
dc.identifier.citedreferenceVogt, M. F., Kivelson, M. G., Khurana, K. K., Walker, R. J., Bonfond, B., Grodent, D., & Radioti, A. ( 2011 ). Improved mapping of Jupiter’s auroral features to magnetospheric sources. Journal of Geophysical Research, 116, A03220. https://doi.org/10.1029/2010JA016148
dc.identifier.citedreferenceWalker, R. J., & Jia, X. ( 2016 ). Simulation studies of plasma transport at Earth, Jupiter and Saturn. In W. Gonzalez, & E. Parker (Eds.), Magnetic reconnection. (pp. 345 – 372, Vol. 427 ) Springer. https://doi.org/10.1007/978‐3‐319‐26432‐5_9
dc.identifier.citedreferenceWalker, R. J., Ogino, T., & Kivelson, M. G. ( 2001 ). Magnetohydrodynamic simulations of the effects of the solar wind on the Jovian magnetosphere. Planetary and Space Science, 49 ( 3‐4 ), 237 – 245. https://doi.org/10.1016/S0032‐0633(00)00145‐8
dc.identifier.citedreferenceWang, Y., Guo, X., Tang, B., Li, W., & Wang, C. ( 2018 ). Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation. Earth and Planetary Physics, 2, 303 – 309. https://doi.org/10.26464/epp2018028
dc.identifier.citedreferenceWilson, R. J., Bagenal, F., Valek, P. W., McComas, D. J., Allegrini, F., Ebert, R. W., Kim, T. K., Kurth, W. S., Szalay, J. R., & Thomsen, M. F. ( 2018 ). Solar wind properties during Juno’s approach to Jupiter: Data analysis and resulting plasma properties utilizing a 1‐D forward model. Journal of Geophysical Research: Space Physics, 123, 2772 – 2786. https://doi.org/10.1002/2017JA024860
dc.identifier.citedreferenceWoch, J., Krupp, N., & Lagg, A. ( 2002 ). Particle bursts in the Jovian magnetosphere: Evidence for a near‐Jupiter neutral line. Geophysical Research Letters, 29 ( 7 ), 1138. https://doi.org/10.1029/2001GL014080
dc.identifier.citedreferenceZieger, B., & Hansen, K. C. ( 2008 ). Statistical validation of a solar wind propagation model from 1 to 10 AU. Journal of Geophysical Research, 113, A08107. https://doi.org/10.1029/2008JA013046
dc.identifier.citedreferenceBagenal, F., & Delamere, P. A. ( 2011 ). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 116, A05209. https://doi.org/10.1029/2010JA016294
dc.identifier.citedreferenceBlanc, M., Andrews, D. J., Coates, A. J., Hamilton, D. C., Jackman, C. M., Jia, X., Kotova, A., Morooka, M., Smith, H. T., & Westlake, J. H. ( 2015 ). Saturn’s plasma sources and associated transport processes. Space Science Reviews, 192 ( 1‐4 ), 237 – 283. https://doi.org/10.1007/s11214‐015‐0172‐9
dc.identifier.citedreferenceBolton, S. J., Bagenal, F., Blanc, M., Cassidy, T., Chané, E., Jackman, C., Jia, X., Kotova, A., Krupp, N., Milillo, A., Plainaki, C., Smith, H. T., & Waite, H. ( 2015 ). Jupiter’s magnetosphere: Plasma sources and transport. Space Science Reviews, 192 ( 1‐4 ), 209 – 236. https://doi.org/10.1007/s11214‐015‐0184‐5
dc.identifier.citedreferenceBonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., Davis, M. W., Vogt, M. F., Gérard, J. C., Radioti, A., Bolton, S., Levin, S. M., Connerney, J. E. P., Mauk, B. H., Valek, P., Adriani, A., & Kurth, W. S. ( 2017 ). Morphology of the UV aurorae Jupiter during Junos first perijove observations. Geophysical Research Letters, 44, 4463 – 4471. https://doi.org/10.1002/2017GL073114
dc.identifier.citedreferenceChané, E., Palmaerts, B., & Radioti, A. ( 2018 ). Periodic shearing motions in the Jovian magnetosphere causing a localized peak in the main auroral emission close to noon. Planetary and Space Science., 158, 110 – 117. https://doi.org/10.1016/j.pss.2018.04.023
dc.identifier.citedreferenceChané, E., Saur, J., Keppens, R., & Poedts, S. ( 2017 ). How is the Jovian main auroral emission affected by the solar wind? Journal of Geophysical Research: Space Physics, 122, 1960 – 1978. https://doi.org/10.1002/2016JA023318
dc.identifier.citedreferenceChané, E., Saur, J., & Poedts, S. ( 2013 ). Modeling Jupiter’s magnetosphere: Influence of the internal sources. Journal of Geophysical Research: Space Physics, 118, 2157 – 2172. https://doi.org/10.1002/jgra.50258
dc.identifier.citedreferenceClarke, J. T., Nichols, J., Gérard, J. C., Grodent, D., Hansen, K. C., Kurth, W., Gladstone, G. R., Duval, J., Wannawichian, S., Bunce, E., Cowley, S. W. H., Crary, F., Dougherty, M., Lamy, L., Mitchell, D., Pryor, W., Retherford, K., Stallard, T., Zieger, B., Zarka, P., & Cecconi, B. ( 2009 ). Response of Jupiter’s and Saturn’s auroral activity to the solar wind. Journal of Geophysical Research, 114, A05210. https://doi.org/10.1029/2008JA013694
dc.identifier.citedreferenceConnerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K. M., Bolton, S. J., & Levin, S. M. ( 2018 ). A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45, 2590 – 2596. https://doi.org/10.1002/2018GL077312
dc.identifier.citedreferenceCowley, S. W. H., Badman, S. V., Imber, S. M., & Milan, S. E. ( 2008 ). Comment on “Jupiter: A fundamentally different magnetospheric interaction with the solar wind” by DJ McComas and F. Bagenal. Geophysical Research Letters, 35, L10101. https://doi.org/10.1029/2007GL032645
dc.identifier.citedreferenceCowley, S. W. H., & Bunce, E. J. ( 2001 ). Origin of the main auroral oval in Jupiter’s coupled magnetosphere–ionosphere system. Planetary and Space Science, 49 ( 10–11 ), 1067 – 1088. https://doi.org/10.1016/s0032‐0633(00)00167‐7
dc.identifier.citedreferenceCowley, S. W. H., & Bunce, E. J. ( 2003 ). Modulation of Jupiter’s main auroral oval emissions by solar wind induced expansions and compressions of the magnetosphere. Planetary and Space Science, 51 ( 1 ), 57 – 79. https://doi.org/10.1016/S0032‐0633(02)00118‐6
dc.identifier.citedreferenceCowley, S. W. H., Bunce, E. J., & Nichols, J. D. ( 2003 ). Origins of Jupiter’s main oval auroral emissions. Journal of Geophysical Research, 108 ( A4 ), 8002. https://doi.org/10.1029/2002JA009329
dc.identifier.citedreferenceCowley, S. W. H., Bunce, E. J., Stallard, T. S., & Miller, S. ( 2003 ). Jupiter’s polar ionospheric flows: Theoretical interpretation. Geophysical Research Letters, 30 ( 5 ), 1220. https://doi.org/10.1029/2002GL016030
dc.identifier.citedreferenceCowley, S. W. H., Nichols, J. D., & Andrews, D. J. ( 2007 ). Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar wind‐induced compressions and expansions of the magnetosphere: a simple theoretical model. Annals of Geophysics, 25 ( 6 ), 1433 – 1463. https://doi.org/10.5194/angeo‐25‐1433‐2007
dc.identifier.citedreferenceCrooker, N. U., Luhmann, J. G., Russell, C. T., Smith, E. J., Spreiter, J. R., & Stahara, S. S. ( 1985 ). Magnetic field draping against the dayside magnetopause. Journal of Geophysical Research, 90 ( A4 ), 3505 – 3510. https://doi.org/10.1029/JA090iA04p03505
dc.identifier.citedreferenceDougherty, L. P., Bodisch, K. M., & Bagenal, F. ( 2017 ). Survey of Voyager plasma science ions at Jupiter: 2. Heavy ions. Journal of Geophysical Research: Space Physics, 122, 8257 – 8276. https://doi.org/10.1002/2017JA024053
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6 ( 2 ), 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceErkaev, N. V., Farrugia, C. J., & Biernat, H. K. ( 1996 ). Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies. Journal of Geophysical Research, 101 ( A5 ), 10665 – 10672. https://doi.org/10.1029/95JA03518
dc.identifier.citedreferenceFarrugia, C. J., Biernat, H. K., & Erkaev, N. V. ( 1998 ). The effect of the magnetopause shapes of Jupiter and Saturn on magnetosheath parameters. Planetary and Space Science, 46 ( 5 ), 507 – 514. https://doi.org/10.1016/S0032‐0633(97)00225‐0
dc.identifier.citedreferenceFrank, L. A., Paterson, W. R., & Khurana, K. K. ( 2002 ). Observations of thermal plasmas in Jupiter’s magnetotail. Journal of Geophysical Research, 107 ( A1 ), 1003. https://doi.org/10.1029/2001JA000077
dc.identifier.citedreferenceFukazawa, K., Ogino, T., & Walker, R. J. ( 2006 ). Configuration and dynamics of the Jovian magnetosphere. Journal of Geophysical Research, 111, A10207. https://doi.org/10.1029/2006JA011874
dc.identifier.citedreferenceFukazawa, K., Ogino, T., & Walker, R. J. ( 2005 ). Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophysical Research Letters, 32, L03202. https://doi.org/10.1029/2004gl021392
dc.identifier.citedreferenceFukazawa, K., Ogino, T., & Walker, R. J. ( 2010 ). A simulation study of dynamics in the distant Jovian magnetotail. Journal of Geophysical Research, 115, A09219. https://doi.org/10.1029/2009JA015228
dc.identifier.citedreferenceGombosi, T. I., Tóth, G., De Zeeuw, D. L., Hansen, K. C., Kabin, K., & Powell, K. G. ( 2002 ). Semirelativistic magnetohydrodynamics and physics‐based convergence acceleration. Journal of Computational Physics, 177 ( 1 ), 176 – 205. https://doi.org/10.1006/jcph.2002.7009
dc.identifier.citedreferenceGrodent, D. ( 2015 ). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187 ( 1‐4 ), 23 – 50. https://doi.org/10.1007/s11214‐014‐0052‐8
dc.identifier.citedreferenceGrodent, D., Clarke, J. T., Waite, J. H. Jr., Cowley, S. W. H., Gerard, J.‐C., & Kim, J. ( 2003 ). Jupiter’s polar auroral emissions. Journal of Geophysical Research, 108 ( A10 ), 1366. https://doi.org/10.1029/2003JA010017
dc.identifier.citedreferenceGurnett, D. A., Kurth, W. S., Hospodarsky, G. B., Persoon, A. M., Zarka, P., Lecacheux, A., et al. ( 2002 ). Control of Jupiter’s radio emission and aurorae by the solar wind. Nature, 415 ( 6875 ), 985 – 987. https://doi.org/10.1038/415985a
dc.identifier.citedreferenceHansen K. C., ( 2001 ). MHD Simulations of the magnetospheres of Jupiter and Saturn: Application to the Cassini mission. PhD Thesis, University of Michigan – Ann Arbor
dc.identifier.citedreferenceHill, T. W. ( 1979 ). Inertial limit on corotation. Journal of Geophysical Research, 84 ( A11 ), 6554 – 6558. https://doi.org/10.1029/JA084iA11p06554
dc.identifier.citedreferenceHill, T. W. ( 1980 ). Corotation lag in Jupiter’s magnetosphere: Comparison of observation and theory. Science, 207 ( 4428 ), 301 – 302. https://doi.org/10.1126/science.207.4428.301
dc.identifier.citedreferenceHill, T. W. ( 2001 ). The Jovian auroral oval. Journal of Geophysical Research, 106 ( A5 ), 8101 – 8107. https://doi.org/10.1029/2000JA000302
dc.identifier.citedreferenceJia, X., Hansen, K. C., Gombosi, T. I., Kivelson, M. G., Tóth, G., DeZeeuw, D. L., & Ridley, A. J. ( 2012 ). Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. Journal of Geophysical Research, 117, A05225. https://doi.org/10.1029/2012JA017575
dc.identifier.citedreferenceJia, X., Kivelson, M. G., & Gombosi, T. I. ( 2012 ). Driving Saturn’s magnetospheric periodicities from the atmosphere/ionosphere. Journal of Geophysical Research, 117, A04215. https://doi.org/10.1029/2011JA017367
dc.identifier.citedreferenceJoy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., & Ogino, T. ( 2002 ). Probabilistic models of the Jovian magnetopause and bow shock locations. Journal of Geophysical Research, 107 ( A10 ), 1309. https://doi.org/10.1029/2001JA009146
dc.identifier.citedreferenceKhurana, K. K. ( 2001 ). Influence of solar wind on Jupiter’s magnetosphere deduced from currents in the equatorial plane. Journal of Geophysical Research, 106 ( A11 ), 25999 – 26016. https://doi.org/10.1029/2000JA000352
dc.identifier.citedreferenceKhurana, K. K., Kivelson, M. G., Vasiliunas, V. M., Krupp, N., Woch, J., Lagg, A., Mauk, B. H., & Kurth, W. S. ( 2004 ). The configuration of Jupiter’s magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter: The Planet, Satellites and Magnetosphere, (pp. 593 – 616 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceKhurana, K. K., & Schwarzl, H. K. ( 2005 ). Global structure of Jupiter’s magnetospheric current sheet. Journal of Geophysical Research, 110, A07227. https://doi.org/10.1029/2004JA010757
dc.identifier.citedreferenceKimura, T., Badman, S. V., Tao, C., Yoshioka, K., Murakami, G., Yamazaki, A., et al. ( 2015 ). Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope. Geophysical Research Letters, 42, 1662 – 1668. https://doi.org/10.1002/2015GL063272
dc.identifier.citedreferenceKimura, T., Hiraki, Y., Tao, C., Tsuchiya, F., Delamere, P. A., Yoshioka, K., Murakami, G., Yamazaki, A., Kita, H., Badman, S. V., Fukazawa, K., Yoshikawa, I., & Fujimoto, M. ( 2018 ). Response of Jupiter’s aurora to plasma mass loading rate monitored by the Hisaki satellite during volcanic eruptions at Io. Journal of Geophysical Research: Space Physics, 123, 1885 – 1899. https://doi.org/10.1002/2017JA025029
dc.identifier.citedreferenceKimura, T., Nichols, J. D., Gray, R. L., Tao, C., Murakami, G., Yamazaki, A., Badman, S. V., Tsuchiya, F., Yoshioka, K., Kita, H., Grodent, D., Clark, G., Yoshikawa, I., & Fujimoto, M. ( 2017 ). Transient brightening of Jupiter’s aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft. Geophysical Research Letters, 44, 4523 – 4531. https://doi.org/10.1002/2017GL072912
dc.identifier.citedreferenceKita, H., Kimura, T., Tao, C., Tsuchiya, F., Misawa, H., Sakanoi, T., Kasaba, Y., Murakami, G., Yoshioka, K., Yamazaki, A., Yoshikawa, I., & Fujimoto, M. ( 2016 ). Characteristics of solar wind control on Jovian UV auroral activity deciphered by long‐term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere? Geophysical Research Letters, 43, 6790 – 6798. https://doi.org/10.1002/2016GL069481
dc.identifier.citedreferenceKivelson, M. G., & Khurana, K. K. ( 2002 ). Properties of the magnetic field in the Jovian magnetotail. Journal of Geophysical Research, 107 ( A8 ), 1196. https://doi.org/10.1029/2001JA000249
dc.identifier.citedreferenceKrupp, N., Vasyliunas, V., Woch, J., Lagg, A., Khurana, K., Kivelson, M., Mauk, B. H., Roelof, E. C., Williams, D. J., Krimigis, S. M., Kurth, W. S., Frank, L. A., & Paterson, W. R. ( 2004 ). Dynamics of the Jovian magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter: The planet, satellites and magnetosphere, (pp. 617 – 638 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceLinde, T. ( 2002 ). A practical, general‐purpose, two‐state HLL Riemann solver for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 40 ( 3‐4 ), 391 – 402. https://doi.org/10.1002/fld.312
dc.identifier.citedreferenceMasters, A. ( 2017 ). Model‐based assessments of magnetic reconnection and Kelvin‐Helmholtz instability at Jupiter’s magnetopause. Journal of Geophysical Research: Space Physics, 122, 11,154 – 11,174. https://doi.org/10.1002/2017JA024736
dc.identifier.citedreferenceMauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P., Roelof, E. C., Williams, D. J., et al. ( 2004 ). Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. Journal of Geophysical Research, 109, A09S12. https://doi.org/10.1029/2003JA010270
dc.identifier.citedreferenceMcComas, D. J., Allegrini, F., Bagenal, F., Crary, F., Ebert, R. W., Elliott, H., Stern, A., & Valek, P. ( 2007 ). Diverse plasma populations and structures in Jupiter’s magnetotail. Science, 318 ( 5848 ), 217 – 220. https://doi.org/10.1126/science.1147393
dc.identifier.citedreferenceMcComas, D. J., & Bagenal, F. ( 2007 ). Jupiter: A fundamentally different magnetospheric interaction with the solar wind. Geophysical Research Letters, 34, L20106. https://doi.org/10.1029/2007GL031078
dc.identifier.citedreferenceMiyoshi, T., & Kusano, K. ( 1997 ). MHD simulation of a rapidly rotating magnetosphere interacting with the external plasma flow. Geophysical Research Letters, 24 ( 21 ), 2627 – 2630. https://doi.org/10.1029/97GL52739
dc.identifier.citedreferenceMoriguchi, T., Nakamizo, A., Tanaka, T., Obara, T., & Shimazu, H. ( 2008 ). Current systems in the Jovian magnetosphere. Journal of Geophysical Research, 113, A05204. https://doi.org/10.1029/2007JA012751
dc.identifier.citedreferenceNichols, J. D. ( 2011 ). Magnetosphere‐ionosphere coupling in Jupiter’s middle magnetosphere: Computations including a self‐consistent current sheet magnetic field model. Journal of Geophysical Research, 116, A10232. https://doi.org/10.1029/2011JA016922
dc.identifier.citedreferenceNichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Clarke, J. T., Connerney, J. E. P., Cowley, S. W. H., Ebert, R. W., Fujimoto, M., Gérard, J. C., Gladstone, G. R., Grodent, D., Kimura, T., Kurth, W. S., Mauk, B. H., Murakami, G., McComas, D. J., Orton, G. S., Radioti, A., Stallard, T. S., Tao, C., Valek, P. W., Wilson, R. J., Yamazaki, A., & Yoshikawa, I. ( 2017 ). Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44, 7643 – 7652. https://doi.org/10.1002/2017GL073029
dc.identifier.citedreferenceNichols, J. D., Bunce, E. J., Clarke, J. T., Cowley, S. W. H., Gérard, J. C., Grodent, D., & Pryor, W. R. ( 2007 ). Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. Journal of Geophysical Research, 112, A02203. https://doi.org/10.1029/2006JA012005
dc.identifier.citedreferenceNichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. ( 2009 ). Observations of Jovian polar auroral filaments. Geophysical Research Letters, 36, L08101. https://doi.org/10.1029/2009GL037578
dc.identifier.citedreferenceNichols, J. D., & Cowley, S. W. H. ( 2003 ). Magnetosphere‐ionosphere coupling currents in Jupiter’s middle magnetosphere: Dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate. Annals of Geophysics, 21, 1419 – 1441. https://doi.org/10.5194/angeo‐21‐1419‐2003
dc.identifier.citedreferenceNichols, J. D., & Cowley, S. W. H. ( 2004 ). Magnetosphere‐ionosphere coupling currents in Jupiter’s middle magnetosphere: Effect of precipitation‐induced enhancement of the ionospheric Pedersen conductivity. Annals of Geophysics, 22 ( 5 ), 1799 – 1827. https://doi.org/10.5194/angeo‐22‐1799‐2004
dc.identifier.citedreferenceNichols, J. D., Cowley, S. W. H., & McComas, D. J. ( 2006 ). Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ~5AU. Annales Geophysicae, 24 ( 1 ), 393 – 406. https://doi.org/10.5194/angeo‐24‐393‐2006
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.