Ecogeographical rules and the macroecology of food webs
dc.contributor.author | Baiser, Benjamin | |
dc.contributor.author | Gravel, Dominique | |
dc.contributor.author | Cirtwill, Alyssa R. | |
dc.contributor.author | Dunne, Jennifer A. | |
dc.contributor.author | Fahimipour, Ashkaan K. | |
dc.contributor.author | Gilarranz, Luis J. | |
dc.contributor.author | Grochow, Joshua A. | |
dc.contributor.author | Li, Daijiang | |
dc.contributor.author | Martinez, Neo D. | |
dc.contributor.author | McGrew, Alicia | |
dc.contributor.author | Poisot, Timothée | |
dc.contributor.author | Romanuk, Tamara N. | |
dc.contributor.author | Stouffer, Daniel B. | |
dc.contributor.author | Trotta, Lauren B. | |
dc.contributor.author | Valdovinos, Fernanda S. | |
dc.contributor.author | Williams, Richard J. | |
dc.contributor.author | Wood, Spencer A. | |
dc.contributor.author | Yeakel, Justin D. | |
dc.date.accessioned | 2019-09-30T15:31:41Z | |
dc.date.available | WITHHELD_13_MONTHS | |
dc.date.available | 2019-09-30T15:31:41Z | |
dc.date.issued | 2019-09 | |
dc.identifier.citation | Baiser, Benjamin; Gravel, Dominique; Cirtwill, Alyssa R.; Dunne, Jennifer A.; Fahimipour, Ashkaan K.; Gilarranz, Luis J.; Grochow, Joshua A.; Li, Daijiang; Martinez, Neo D.; McGrew, Alicia; Poisot, Timothée ; Romanuk, Tamara N.; Stouffer, Daniel B.; Trotta, Lauren B.; Valdovinos, Fernanda S.; Williams, Richard J.; Wood, Spencer A.; Yeakel, Justin D. (2019). "Ecogeographical rules and the macroecology of food webs." Global Ecology and Biogeography (9): 1204-1218. | |
dc.identifier.issn | 1466-822X | |
dc.identifier.issn | 1466-8238 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/151318 | |
dc.description.abstract | AimHow do factors such as space, time, climate and other ecological drivers influence food web structure and dynamics? Collections of well‐studied food webs and replicate food webs from the same system that span biogeographical and ecological gradients now enable detailed, quantitative investigation of such questions and help integrate food web ecology and macroecology. Here, we integrate macroecology and food web ecology by focusing on how ecogeographical rules [the latitudinal diversity gradient (LDG), Bergmann’s rule, the island rule and Rapoport’s rule] are associated with the architecture of food webs.LocationGlobal.Time periodCurrent.Major taxa studiedAll taxa.MethodsWe discuss the implications of each ecogeographical rule for food webs, present predictions for how food web structure will vary with each rule, assess empirical support where available, and discuss how food webs may influence ecogeographical rules. Finally, we recommend systems and approaches for further advancing this research agenda.ResultsWe derived testable predictions for some ecogeographical rules (e.g. LDG, Rapoport’s rule), while for others (e.g., Bergmann’s and island rules) it is less clear how we would expect food webs to change over macroecological scales. Based on the LDG, we found weak support for both positive and negative relationships between food chain length and latitude and for increased generality and linkage density at higher latitudes. Based on Rapoport’s rule, we found support for the prediction that species turnover in food webs is inversely related to latitude.Main conclusionsThe macroecology of food webs goes beyond traditional approaches to biodiversity at macroecological scales by focusing on trophic interactions among species. The collection of food web data for different types of ecosystems across biogeographical gradients is key to advance this research agenda. Further, considering food web interactions as a selection pressure that drives or disrupts ecogeographical rules has the potential to address both mechanisms of and deviations from these macroecological relationships. For these reasons, further integration of macroecology and food webs will help ecologists better understand the assembly, maintenance and change of ecosystems across space and time. | |
dc.publisher | University of Chicago Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | latitudinal diversity gradient | |
dc.subject.other | macroecology | |
dc.subject.other | Rapoport’s rule | |
dc.subject.other | Bergmann’s rule | |
dc.subject.other | ecogeographical rules | |
dc.subject.other | ecological networks | |
dc.subject.other | food webs | |
dc.subject.other | island rule | |
dc.title | Ecogeographical rules and the macroecology of food webs | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geology and Earth Sciences | |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/151318/1/geb12925_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/151318/2/geb12925.pdf | |
dc.identifier.doi | 10.1111/geb.12925 | |
dc.identifier.source | Global Ecology and Biogeography | |
dc.identifier.citedreference | Rohde, K. ( 1992 ). Latitudinal gradients in species diversity: The search for the primary cause. Oikos, 65, 514 – 527. https://doi.org/10.2307/3545569 | |
dc.identifier.citedreference | Rosenzweig, M. L. ( 1995 ). Species diversity in space and time. UK: Cambridge University Press. | |
dc.identifier.citedreference | Roy, K., Jablonski, D., & Valentine, J. W. ( 1994 ). Eastern Pacific molluscan provinces and latitudinal diversity gradient: No evidence for “Rapoport’s rule”. Proceedings of the National Academy of Sciences USA, 91, 8871 – 8874. | |
dc.identifier.citedreference | Ruggiero, A., & Werenkraut, V. ( 2007 ). One‐dimensional analyses of Rapoport’s rule reviewed through meta‐analysis. Global Ecology and Biogeography, 16, 401 – 414. https://doi.org/10.1111/j.1466-8238.2006.00303.x | |
dc.identifier.citedreference | Rypel, A. L. ( 2014 ). The cold‐water connection: Bergmann’s rule in North American freshwater fishes. The American Naturalist, 183, 147 – 156. | |
dc.identifier.citedreference | Sabo, J. L., Finlay, J. C., Kennedy, T., & Post, D. M. ( 2010 ). The role of discharge variation in scaling of drainage area and food chain length in rivers. Science, 330 ( 6006 ), 965 – 967. https://doi.org/10.1126/science.1196005 | |
dc.identifier.citedreference | Salisbury, C. L., Seddon, N., Cooney, C. R., & Tobias, J. A. ( 2012 ). The latitudinal gradient in dispersal constraints: Ecological specialisation drives diversification in tropical birds. Ecology Letters, 15 ( 8 ), 847 – 855. https://doi.org/10.1111/j.1461-0248.2012.01806.x | |
dc.identifier.citedreference | Sax, D. F., & Gaines, S. D. ( 2003 ). Species diversity: From global decreases to local increases. Trends in Ecology & Evolution, 18 ( 11 ), 561 – 566. | |
dc.identifier.citedreference | Sahasrabudhe, S., & Motter, A. E. ( 2011 ). Rescuing ecosystems from extinction cascades through compensatory perturbations. Nature Communications, 2, 170. | |
dc.identifier.citedreference | Schemske, D. ( 2002 ). Tropical diversity: Patterns and processes. In R. Chazdon, & T. Whitmore (Eds.), Ecological and evolutionary perspectives on the origins of tropical diversity: Key papers and commentaries (pp. 163 – 173 ). IL: University of Chicago Press. | |
dc.identifier.citedreference | Schmidt, N. M., & Jensen, P. M. ( 2003 ). Changes in mammalian body length over 175 years ‐ adaptations to a fragmented landscape? Conservation Ecology, 7, 6. | |
dc.identifier.citedreference | Schoener, T. W., Spiller, D. A., & Piovia‐Scott, J. ( 2016 ). Variation in ecological interaction strength with island area: Theory and data from the Bahamian archipelago. Global Ecology and Biogeography, 25 ( 7 ), 891 – 899. | |
dc.identifier.citedreference | Simberloff, D. S., & Wilson, E. O. ( 1969 ). Experimental zoogeography of islands: The colonization of empty islands. Ecology, 50 ( 2 ), 278 – 296. https://doi.org/10.2307/1934856 | |
dc.identifier.citedreference | Smith, F. D. M., May, R. M., & Harvey, P. H. ( 1994 ). Geographical ranges of Australian mammals. Journal of Animal Ecology, 63, 441 – 450. | |
dc.identifier.citedreference | Srivastava, D. S., Kolasa, J., Bengtsson, J., Gonzalez, A., Lawler, S. P., Miller, T. E., … Trzcinski, M. K. ( 2004 ). Are natural microcosms useful model systems for ecology? Trends in Ecology and Evolution, 19, 379 – 384. https://doi.org/10.1016/j.tree.2004.04.010 | |
dc.identifier.citedreference | Staniczenko, P. P., Lewis, O. T., Jones, N. S., & Reed-Tsochas, F. ( 2010 ). Structural dynamics and robustness of food webs. Ecology letters, 13 ( 7 ), 891 – 899. | |
dc.identifier.citedreference | Steenhof, K., & Kochert, M. N. ( 1988 ). Dietary responses of three raptor species to changing prey densities in a natural environment. Journal of Animal Ecology, 57, 37 – 48. https://doi.org/10.2307/4761 | |
dc.identifier.citedreference | Stevens, G. C. ( 1989 ). The latitudinal gradient in geographical range: How so many species coexist in the tropics. The American Naturalist, 133, 240 – 256. https://doi.org/10.1086/284913 | |
dc.identifier.citedreference | Stevens, G. C. ( 1992 ). The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140, 893 – 911. https://doi.org/10.1086/285447 | |
dc.identifier.citedreference | Stevens, G. C. ( 1996 ). Extending Rapoport’s rule to Pacific marine fishes. Journal of Biogeography, 23, 149 – 154. https://doi.org/10.1046/j.1365-2699.1996.00977.x | |
dc.identifier.citedreference | Storch, D., Bohdalková, E., & Okie, J. ( 2018 ). The more‐individuals hypothesis revisited: The role of community abundance in species richness regulation and the productivity–diversity relationship. Ecology Letters, 21 ( 6 ), 920 – 937. https://doi.org/10.1111/ele.12941 | |
dc.identifier.citedreference | Stouffer, D. B., Camacho, J., Guimera, R., Ng, C. A., & Nunes Amaral, L. A. ( 2005 ). Quantitative patterns in the structure of model and empirical food webs. Ecology, 86 ( 5 ), 1301 – 1311. | |
dc.identifier.citedreference | Takimoto, G., & Post, D. M. ( 2013 ). Environmental determinants of food‐chain length: A meta‐analysis. Ecological Research, 28, 675 – 681. https://doi.org/10.1007/s11284-012-0943-7 | |
dc.identifier.citedreference | Thornton, I. W. ( 1997 ). Krakatau: The destruction and reassembly of an island ecosystem. Cambridge, MA: Harvard University Press. | |
dc.identifier.citedreference | Tunney, T. D., McCann, K. S., Lester, N. P., & Shuter, B. J. ( 2012 ). Food web expansion and contraction in response to changing environmental conditions. Nature Communications, 3, 1105. https://doi.org/10.1038/ncomms2098 | |
dc.identifier.citedreference | Tylianakis, J. M., & Morris, R. J. ( 2017 ). Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics, 48, 25 – 48. https://doi.org/10.1146/annurev-ecolsys-110316-022821 | |
dc.identifier.citedreference | Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. ( 2007 ). Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 445, 202 – 205. https://doi.org/10.1038/nature05429 | |
dc.identifier.citedreference | Van Valen, L. ( 1973 ). Pattern and the balance of nature. Evolutionary Theory, 1, 31 – 49. | |
dc.identifier.citedreference | Vander Zanden, J. M., & Fetzer, W. W. ( 2007 ). Global patterns of aquatic food chain length. Oikos, 116 ( 8 ), 1378 – 1388. https://doi.org/10.1111/j.0030-1299.2007.16036.x | |
dc.identifier.citedreference | Vander Zanden, M. J., Shuter, B. J., Lester, N., & Rasmussen, J. B. ( 1999 ). Patterns of food chain length in lakes: A stable isotope study. The American Naturalist, 154 ( 4 ), 406 – 416. | |
dc.identifier.citedreference | Vázquez, D. P., & Stevens, R. D. ( 2004 ). The latitudinal gradient in niche breadth: Concepts and evidence. The American Naturalist, 164, E1 – E19. https://doi.org/10.1086/421445 | |
dc.identifier.citedreference | Vermaat, J. E., Dunne, J. A., & Gilbert, A. J. ( 2009 ). Major dimensions in food‐web structure properties. Ecology, 90 ( 1 ), 278 – 282. | |
dc.identifier.citedreference | Wallace, A. R. ( 1878 ). Tropical nature and other essays. London, UK: Macmillan. | |
dc.identifier.citedreference | Ward, C. L., & McCann, K. S. ( 2017 ). A mechanistic theory for aquatic food chain length. Nature Communications, 8 ( 1 ), 2028. https://doi.org/10.1038/s41467-017-02157-0 | |
dc.identifier.citedreference | Werner, E. E., & Hal, D. J. ( 1976 ). Niche shifts in sunfishes: Experimental evidence and significance. Science, 191, 404 – 406. https://doi.org/10.1126/science.1246626 | |
dc.identifier.citedreference | Whitton, F. J., Purvis, A., Orme, C. D. L., & Olalla‐Tárraga, M. Á. ( 2012 ). Understanding global patterns in amphibian geographic range size: Does Rapoport rule? Global Ecology and Biogeography, 21, 179 – 190. https://doi.org/10.1111/j.1466-8238.2011.00660.x | |
dc.identifier.citedreference | Wiens, J. J., & Graham, C. H. ( 2005 ). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519 – 539. | |
dc.identifier.citedreference | Williams, R. J., & Martinez, N. D. ( 2000 ). Simple rules yield complex food webs. Nature, 404 ( 6774 ), 180 – 183. | |
dc.identifier.citedreference | Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., … Svenning, J.‐C. ( 2013 ). The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews, 88 ( 1 ), 15 – 30. https://doi.org/10.1111/j.1469-185X.2012.00235.x | |
dc.identifier.citedreference | Wood, S. A., Russell, R., Hanson, D., Williams, R. J., & Dunne, J. A. ( 2015 ). Effects of spatial scale of sampling on food web structure. Ecology and Evolution, 5, 3769 – 3782. https://doi.org/10.1002/ece3.1640 | |
dc.identifier.citedreference | Yeakel, J. D., Pires, M. M., Rudolf, L., Dominy, N. J., Koch, P. L., Guimarães, P. R., … Gross, T. ( 2014 ). Collapse of an ecological network in Ancient Egypt. Proceedings of the National Academy of Sciences USA, 111 ( 40 ), 14472 – 14477. https://doi.org/10.1073/pnas.1408471111 | |
dc.identifier.citedreference | Zeuss, D., Brunzel, S., & Brandl, R. ( 2017 ). Environmental drivers of voltinism and body size in insect assemblages across Europe. Global Ecology and Biogeography, 26 ( 2 ), 154 – 165. https://doi.org/10.1111/geb.12525 | |
dc.identifier.citedreference | Ziegler, J. P., Solomon, C. T., Finney, B. P., & Gregory‐Eaves, I. ( 2015 ). Macrophyte biomass predicts food chain length in shallow lakes. Ecosphere, 6 ( 1 ), 1 – 16. https://doi.org/10.1890/ES14-00158.1 | |
dc.identifier.citedreference | Allesina, S., Grilli, J., Barabás, G., Tang, S., Aljadeff, J., & Maritan, A. ( 2015 ). Predicting the stability of large structured food webs. Nature Communications, 6 ( 1 ), 7842. https://doi.org/10.1038/ncomms8842 | |
dc.identifier.citedreference | Angilletta, M. J., Jr., Niewiarowski, P. H., Dunham, A. E., Leaché, A. D., & Porter, W. P. ( 2004 ). Bergmann’s clines in ectotherms: Illustrating a life‐history perspective with sceloporine lizards. The American Naturalist, 164 ( 6 ), E168 – E183. https://doi.org/10.1086/425222 | |
dc.identifier.citedreference | Araújo, M. S., Guimaraes, P. R., Jr., Svanbäck, R., Pinheiro, A., Guimarães, P., Reis, S. F. D., & Bolnick, D. I. ( 2008 ). Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology, 89, 1981 – 1993. https://doi.org/10.1890/07-0630.1 | |
dc.identifier.citedreference | Ashton, K. G. ( 2002 ). Patterns of within‐species body size variation of birds: Strong evidence for Bergmann’s rule. Global Ecology and Biogeography, 11, 505 – 523. | |
dc.identifier.citedreference | Ashton, K. G., Tracy, M. C., & de Queiroz, A. ( 2000 ). Is Bergmann’s rule valid for mammals? The American Naturalist, 156, 390 – 415. | |
dc.identifier.citedreference | Baiser, B., Gotelli, N. J., Buckley, H. L., Miller, T. E., & Ellison, A. M. ( 2012 ). Geographic variation in network structure of a nearctic aquatic food web. Global Ecology and Biogeography, 21, 579 – 591. https://doi.org/10.1111/j.1466-8238.2011.00705.x | |
dc.identifier.citedreference | Barnes, C., Bethea, D. M., Brodeur, R. D., Spitz, J., Ridoux, V., Pusineri, C., … Jennings, S. ( 2008 ). Predator and prey body sizes in marine food webs: Ecological Archives E089051. Ecology, 89, 881 – 881. https://doi.org/10.1890/07-1551.1 | |
dc.identifier.citedreference | Beckerman, A. P., Petchey, O. L., & Warren, P. H. ( 2006 ). Foraging biology predicts food web complexity. Proceedings of the National Academy of Sciences USA, 103, 13745 – 13749. https://doi.org/10.1073/pnas.0603039103 | |
dc.identifier.citedreference | Bengtsson, J. ( 1994 ). Confounding variables and independent observations in comparative analyses of food webs. Ecology, 1282 – 1288. https://doi.org/10.2307/1937453 | |
dc.identifier.citedreference | Bergmann, K. G. L. C. ( 1847 ). Über die Verhältnisse der wärmeokönomie der Thiere zu ihrer Grösse. Göttinger Studien, 3, 595 – 708. | |
dc.identifier.citedreference | Berlow, E. L., Dunne, J. A., Martinez, N. D., Stark, P. B., Williams, R. J., & Brose, U. ( 2009 ). Simple prediction of interaction strengths in complex food webs. Proceedings of the National Academy of Sciences, 106 ( 1 ), 187 – 191. | |
dc.identifier.citedreference | Blackburn, T. M., & Gaston, K. J. ( 1996 ). Spatial patterns in the geographic range sizes of bird species in the New World. Philosophical Transactions of the Royal Society B: Biological Sciences, 351, 897 – 912. | |
dc.identifier.citedreference | Blackburn, T. M., & Gaston, K. J. ( 2006 ). There’s more to macroecology than meets the eye. Global Ecology and Biogeography, 15, 537 – 540. https://doi.org/10.1111/j.1466-8238.2006.00276.x | |
dc.identifier.citedreference | Blackburn, T. M., & Hawkins, B. A. ( 2004 ). Bergmann’s rule and the mammal fauna of northern North America. Ecography, 27, 715 – 724. | |
dc.identifier.citedreference | Boback, S. M., & Guyer, C. ( 2003 ). Empirical evidence for an optimal body size in snakes. Evolution, 57, 345 – 451. https://doi.org/10.1111/j.0014-3820.2003.tb00268.x | |
dc.identifier.citedreference | Boit, A., Martinez, N. D., Williams, R. J., & Gaedke, U. ( 2012 ). Mechanistic theory and modelling of complex food‐web dynamics in Lake Constance. Ecology Letters, 15, 594 – 602. https://doi.org/10.1111/j.1461-0248.2012.01777.x | |
dc.identifier.citedreference | Briand, F., & Cohen, J. E. ( 1984 ). Community food webs have scale-invariant structure. Nature, 307 ( 5948 ), 264. | |
dc.identifier.citedreference | Brose, U. ( 2010 ). Body‐mass constraints on foraging behaviour determine population and food‐web dynamics. Functional Ecology, 24, 28 – 34. https://doi.org/10.1111/j.1365-2435.2009.01618.x | |
dc.identifier.citedreference | Brose, U., Blanchard, J. L., Eklöf, A., Galiana, N., Hartvig, M., Hirt, R. M., … Jacob, U. ( 2016 ). Predicting the consequences of species loss using size‐structured biodiversity approaches. Biological Reviews of the Cambridge Philosophical Society, 92 ( 2 ), 684 – 697. | |
dc.identifier.citedreference | Brose, U., Cushing, L., Berlow, E. L., Jonsson, T., Banasek‐Richter, C., Bersier, L.‐F., … Martinez, N. D. ( 2005 ). Body sizes of consumers and their resources. Ecology, 86 ( 9 ), 2545 – 2545. https://doi.org/10.1890/05-0379 | |
dc.identifier.citedreference | Brose, U., Jonsson, T., Berlow, E. L., Warren, P., Banasek‐Richter, C., Bersier, L. F., … Cohen J. E. ( 2006 ). Consumer‐resource body‐size relationships in natural food webs. Ecology, 87, 2411 – 2417. | |
dc.identifier.citedreference | Brose, U., Williams, R. J., & Martinez, N. D. ( 2006 ). Allometric scaling enhances stability in complex food webs. Ecology Letters, 9, 1228 – 1236. | |
dc.identifier.citedreference | Brown, J. H. ( 1995 ). Macroecology. Chicago: University of Chicago Press. | |
dc.identifier.citedreference | Brown, J. H. ( 2014 ). Why are there so many species in the tropics? Journal of Biogeography, 41, 8 – 22. https://doi.org/10.1111/jbi.12228 | |
dc.identifier.citedreference | Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. ( 2004 ). Toward a metabolic theory of ecology. Ecology, 85, 1771 – 1789. https://doi.org/10.1890/03-9000 | |
dc.identifier.citedreference | Canard, E., Mouquet, N., Marescot, L., Gaston, K. J., Gravel, D., & Mouillot, D. ( 2012 ). Emergence of structural patterns in neutral trophic networks. PLoS ONE, 7, e38295. https://doi.org/10.1371/journal.pone.0038295 | |
dc.identifier.citedreference | Cassey, P., & Blackburn, T. ( 2004 ). Body size trends in a Holocene island bird assemblage. Ecography, 27, 59 – 67. https://doi.org/10.1111/j.0906-7590.2004.03585.x | |
dc.identifier.citedreference | Cirtwill, A. R., & Stouffer, D. B. ( 2015 ). Knowledge of predator–prey interactions improves predictions of immigration and extinction in island biogeography. Global Ecology and Biogeography, 25 ( 7 ), 900 – 911. | |
dc.identifier.citedreference | Cirtwill, A. R., Stouffer, D. B., & Romanuk, T. N. ( 2015 ). Latitudinal gradients in biotic niche breadth vary across ecosystem types. Proceedings of the Royal Society B: Biological Sciences, 282, 20151589. | |
dc.identifier.citedreference | Clegg, S. M., & Owens, P. F. ( 2002 ). The ‘island rule’ in birds: Medium body size and its ecological explanation. Proceedings of the Royal Society B: Biological Sciences, 269, 1359 – 1365. https://doi.org/10.1098/rspb.2002.2024 | |
dc.identifier.citedreference | Cohen, J. E., Briand, F., & Newman, C. M. ( 1990 ). Community food webs: Data and theory. New York: Springer-Verlag. | |
dc.identifier.citedreference | Connell, J. H. ( 1971 ). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In P. J. den Boer, & G. R. Gradwell (Eds.), Dynamics of populations (pp. 298 – 312 ). Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation. | |
dc.identifier.citedreference | Coux, C., Rader, R., Bartomeus, I., & Tylianakis, J. M. ( 2016 ). Linking species functional roles to their network roles. Ecology Letters, 19 ( 7 ), 762 – 770. https://doi.org/10.1111/ele.12612 | |
dc.identifier.citedreference | Currie, D. J. ( 1991 ). Energy and large‐scale patterns of animal and plant‐species richness. The American Naturalist, 137, 27 – 49. | |
dc.identifier.citedreference | Darwin, C. ( 1859 ). On the origin of species by means of natural selection. London, UK: J. Murray. | |
dc.identifier.citedreference | Delmas, E., Brose, U., Gravel, D., Stouffer, D. B., & Poisot, T. ( 2017 ). Simulations of biomass dynamics in community food webs. Methods in Ecology and Evolution, 8 ( 7 ), 881 – 886. https://doi.org/10.1111/2041-210X.12713 | |
dc.identifier.citedreference | Dobzhansky, T. ( 1950 ). Evolution in the tropics. American Scientist, 38, 208 – 221. | |
dc.identifier.citedreference | Dunne, J. A. ( 2005 ). The network structure of food webs. In M. Pascual & J. A. Dunne (Eds.), Ecological networks: Linking structure to dynamics in food webs (pp. 27 – 86 ). New York: Oxford University Press. | |
dc.identifier.citedreference | Dunne, J. A., Labandeira, C. C., & Williams, R. J. ( 2014 ). Highly resolved early Eocene food webs show development of modern trophic structure after the end‐Cretaceous extinction. Proceedings of the Royal Society B: Biological Sciences, 281, 20133280. https://doi.org/10.1098/rspb.2013.3280 | |
dc.identifier.citedreference | Dunne, J. A., Maschner, H., Betts, M. W., Huntly, N., Russell, R., Williams, R. J., & Wood, S. A. ( 2016 ). The roles and impacts of human hunter‐gatherers in North Pacific marine food webs. Scientific Reports, 6, 21179. https://doi.org/10.1038/srep21179 | |
dc.identifier.citedreference | Dunne, J. A., Williams, R. J., & Martinez, N. D. ( 2002 ). Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology letters, 5 ( 4 ), 558 – 567. | |
dc.identifier.citedreference | Dunne, J. A., Williams, R. J., & Martinez, N. D. ( 2004 ). Network structure and robustness of marine food webs. Marine Ecology Progress Series, 273, 291 – 302. | |
dc.identifier.citedreference | Dyer, L. A., Singer, M. S., Lill, J. T., Stireman, J. O., Gentry, G. L., Marquis, R. J., … Diniz, I. R. ( 2007 ). Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448 ( 7154 ), 696 – 699. | |
dc.identifier.citedreference | Fahimipour, A. K., & Anderson, K. E. ( 2015 ). Colonisation rate and adaptive foraging control the emergence of trophic cascades. Ecology Letters, 18, 826 – 833. https://doi.org/10.1111/ele.12464 | |
dc.identifier.citedreference | Fietz, J., & Weis‐Dootz, T. ( 2012 ). Stranded on an island: Consequences of forest fragmentation for body size variations in an arboreal mammal, the edible dormouse (Glis glis). Population Ecology, 54 ( 2 ), 313 – 320. https://doi.org/10.1007/s10144-012-0310-0 | |
dc.identifier.citedreference | Foster, J. B. ( 1964 ). The evolution of mammals on islands. Nature, 202, 234 – 235. https://doi.org/10.1038/202234a0 | |
dc.identifier.citedreference | France, R. ( 1992 ). The North American latitudinal gradient in species richness and geographical range of freshwater crayfish and amphipods. The American Naturalist, 139, 342 – 354. | |
dc.identifier.citedreference | Freestone, A. L., Osman, R. W., Ruiz, G. M., & Torchin, M. E. ( 2011 ). Stronger predation in the tropics shapes species richness patterns in marine communities. Ecology, 92 ( 4 ), 983 – 993. https://doi.org/10.1890/09-2379.1 | |
dc.identifier.citedreference | Fretwell, S. D., & Barach, A. L. ( 1977 ). The regulation of plant communities by the food chains exploiting them. Perspectives in Biology and Medicine, 20 ( 2 ), 169 – 185. https://doi.org/10.1353/pbm.1977.0087 | |
dc.identifier.citedreference | Olesen, J. M., & Jordano, P. ( 2002 ). Geographic patterns in plant‐pollinator mutualistic networks. Ecology, 83, 2416 – 2424. | |
dc.identifier.citedreference | Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. ( 2011 ). Declining body size: A third universal response to warming? Trends in Ecology and Evolution, 26, 285 – 291. https://doi.org/10.1016/j.tree.2011.03.005 | |
dc.identifier.citedreference | Gaston, K. J., & Blackburn, T. M. ( 1996 ). Global scale macroecology: Interactions between population size, geographic range size and body size in the Anseriformes. Journal of Animal Ecology, 65, 701 – 714. https://doi.org/10.2307/5669 | |
dc.identifier.citedreference | Gaston, K. J., Blackburn, T. M., & Spicer, J. I. ( 1998 ). Rapoport’s rule: Time for an epitaph? Trends in Ecology and Evolution, 13, 70 – 74. https://doi.org/10.1016/S0169-5347(97)01236-6 | |
dc.identifier.citedreference | Gaston, K. J., Chown, S. L., & Evans, K. L. ( 2008 ). Ecogeographical rules: Elements of a synthesis. Journal of Biogeography, 35, 483 – 500. https://doi.org/10.1111/j.1365-2699.2007.01772.x | |
dc.identifier.citedreference | Gavrilets, S., & Losos, J. B. ( 2009 ). Adaptive radiation: Contrasting theory with data. Science, 323, 732 – 737. https://doi.org/10.1126/science.1157966 | |
dc.identifier.citedreference | Geist, V. ( 1987 ). Bergmann’s rule is invalid. Canadian Journal of Zoology, 65, 1035 – 1038. | |
dc.identifier.citedreference | Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. ( 2006 ). Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integrative and Comparative Biology, 46 ( 1 ), 5 – 17. https://doi.org/10.1093/icb/icj003 | |
dc.identifier.citedreference | Gilarranz, L. J., Mora, C., & Bascompte, J. ( 2016 ). Anthropogenic effects are associated with a lower persistence of marine food webs. Nature Communications, 7 ( 1 ), 10737. https://doi.org/10.1038/ncomms10737 | |
dc.identifier.citedreference | Gravel, D., Baiser, B., Dunne, J. A., Kopelke, J. P., Martinez, N. D., Nyman, T., … Roslin, T. ( 2019 ). Bringing Elton and Grinnell together: A quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 42 ( 3 ), 401 – 415. | |
dc.identifier.citedreference | Gravel, D., Massol, F., Canard, E., Mouillot, D., & Mouquet, N. ( 2011 ). Trophic theory of island biogeography. Ecology Letters, 14, 1010 – 1016. https://doi.org/10.1111/j.1461-0248.2011.01667.x | |
dc.identifier.citedreference | Gravel, D., Poisot, T., Albouy, C., Velez, L., & Mouillot, D. ( 2013 ). Inferring food web structure from predator–prey body size relationships. Methods in Ecology and Evolution, 4, 1083 – 1090. https://doi.org/10.1111/2041-210X.12103 | |
dc.identifier.citedreference | Griffen, B. D., & Byers, J. E. ( 2006 ). Partitioning mechanisms of predator interference in different habitats. Oecologia, 146, 608 – 614. https://doi.org/10.1007/s00442-005-0211-4 | |
dc.identifier.citedreference | Hall, S. J., & Raffaelli, D. ( 1991 ). Food‐web patterns: Lessons from a species‐rich web. Journal of Animal Ecology, 823 – 841. https://doi.org/10.2307/5416 | |
dc.identifier.citedreference | Heaney, L. R. ( 1978 ). Island area and body size of insular mammals: Evidence from the tri-colored squirrel ( Callosciurus prevosti ) of Southeast Asia. Evolution, 32 ( 1 ), 29 – 44. | |
dc.identifier.citedreference | Hein, A. M., & Gillooly, J. F. ( 2011 ). Predators, prey, and transient states in the assembly of spatially structured communities. Ecology, 92, 549 – 555. https://doi.org/10.1890/10-1922.1 | |
dc.identifier.citedreference | Holt, R. D., Lawton, J. H., Polis, G. A., & Martinez, N. D. ( 1999 ). Trophic rank and the species–area relationship. Ecology, 80 ( 5 ), 1495 – 1504. | |
dc.identifier.citedreference | Huston, M. A. ( 1997 ). Hidden treatments in ecological experiments: Re‐evaluating the ecosystem function of biodiversity. Oecologia, 110 ( 4 ), 449 – 460. https://doi.org/10.1007/s004420050180 | |
dc.identifier.citedreference | Huston, M. A., & Wolverton, S. ( 2011 ). Regulation of animal size by eNPP, Bergmann’s rule and related phenomena. Ecological Monographs, 81, 349 – 405. | |
dc.identifier.citedreference | Hutchinson, G. E. ( 1959 ). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145 – 159. | |
dc.identifier.citedreference | Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Meiri, S. ( 2014 ). Is the island rule general? Turtles disagree. Global Ecology and Biogeography, 23, 689 – 700. https://doi.org/10.1111/geb.12149 | |
dc.identifier.citedreference | Jablonski, D., Roy, K., & Valentine, J. W. ( 2006 ). Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science, 314, 102 – 106. https://doi.org/10.1126/science.1130880 | |
dc.identifier.citedreference | Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. ( 2011 ). Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80 ( 3 ), 595 – 602. https://doi.org/10.1111/j.1365-2656.2011.01806.x | |
dc.identifier.citedreference | Jacquet, C., Mouillot, D., Kulbicki, M., & Gravel, D. ( 2017 ). Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation. Ecology Letters, 20 ( 2 ), 135 – 146. https://doi.org/10.1111/ele.12716 | |
dc.identifier.citedreference | Janzen, D. H. ( 1967 ). Why mountain passes are higher in the tropics. The American Naturalist, 101, 233 – 249. https://doi.org/10.1086/282487 | |
dc.identifier.citedreference | Janzen, D. H. ( 1970 ). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104 ( 940 ), 501 – 528. https://doi.org/10.1086/282687 | |
dc.identifier.citedreference | Kalff, J. ( 2002 ). Limnology: Inland water ecosystems. Prentice Hall, NJ. | |
dc.identifier.citedreference | Kartzinel, T. R., Chen, P. A., Coverdale, T. C., Erickson, D. L., Kress, W. J., Kuzmina, M. L., … Pringle, R. M. ( 2015 ). DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proceedings of the National Academy of Sciences USA, 112 ( 26 ), 8019 – 8024. https://doi.org/10.1073/pnas.1503283112 | |
dc.identifier.citedreference | Kaunzinger, C. M., & Morin, P. J. ( 1998 ). Productivity controls food‐chain properties in microbial communities. Nature, 395, 495 – 497. https://doi.org/10.1038/26741 | |
dc.identifier.citedreference | Kissling, W. D., & Schleuning, M. ( 2015 ). Multispecies interactions across trophic levels at macroscales: Retrospective and future directions. Ecography, 38, 346 – 357. https://doi.org/10.1111/ecog.00819 | |
dc.identifier.citedreference | Kitching, R. L. ( 2000 ). Food webs and container habitats: The natural history and ecology of phytotelmata. New York: Cambridge University Press. | |
dc.identifier.citedreference | Kolasa, J., Hewitt, C. L., & Drake, J. A. ( 1998 ). Rapoport’s rule: An explanation or a byproduct of the latitudinal gradient in species richness? Biodiversity and Conservation, 7 ( 11 ), 1447 – 1455. | |
dc.identifier.citedreference | Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Mouillot, D., & Poulin, R. ( 2008 ). Latitudinal gradients in niche breadth: Empirical evidence from haematophagous ectoparasites. Journal of Biogeography, 35 ( 4 ), 592 – 601. https://doi.org/10.1111/j.1365-2699.2007.01800.x | |
dc.identifier.citedreference | Lindeman, R. L. ( 1942 ). The trophic‐dynamic aspect of ecology. Ecology, 23, 399 – 417. | |
dc.identifier.citedreference | Lokatis, S., & Jeschke, J. M. ( 2018 ). The island rule: An assessment of biases and research trends. Journal of Biogeography, 45 ( 2 ), 289 – 303. https://doi.org/10.1111/jbi.13160 | |
dc.identifier.citedreference | Lomolino, M. V. ( 1985 ). Body size of mammals on islands: The island rule reexamined. The American Naturalist, 125, 310 – 316. https://doi.org/10.1086/284343 | |
dc.identifier.citedreference | Lomolino, M. V., & Perault, D. R. ( 2007 ). Body size variation of mammals in a fragmented, temperate rainforest. Conservation Biology, 21, 1059 – 1069. https://doi.org/10.1111/j.1523-1739.2007.00727.x | |
dc.identifier.citedreference | Lomolino, M. V., Sax, D. F., Palombo, M. R., & Van Der Geer, A. A. ( 2012 ). Of mice and mammoths: Evaluations of causal explanations for body size evolution in insular mammals. Journal of Biogeography, 39, 842 – 854. https://doi.org/10.1111/j.1365-2699.2011.02656.x | |
dc.identifier.citedreference | Lomolino, M. V., Sax, D. F., Riddle, B. R., & Brown, J. H. ( 2006 ). The island rule and a research agenda for studying ecogeographical patterns. Journal of Biogeography, 33, 1503 – 1510. https://doi.org/10.1111/j.1365-2699.2006.01593.x | |
dc.identifier.citedreference | MacArthur, R. H. ( 1972 ). Geographical ecology: Patterns in the distribution of species. New York, NY: Harper & Row. | |
dc.identifier.citedreference | MacArthur, R. H., & Wilson, E. O. ( 1967 ). The theory of island biogeography (Vol. 1 ). Princeton, NJ: Princeton University Press. | |
dc.identifier.citedreference | Manyak‐Davis, A., Bell, T. M., & Sotka, E. E. ( 2013 ). The relative importance of predation risk and water temperature in maintaining Bergmann’s rule in a marine ectotherm. The American Naturalist, 182 ( 3 ), 347 – 358. https://doi.org/10.1086/671170 | |
dc.identifier.citedreference | Martinez, N. D. ( 1991 ). Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs, 367 – 392. https://doi.org/10.2307/2937047 | |
dc.identifier.citedreference | Martinez, N. D. ( 1994 ). Scale‐dependent constraints on food‐web structure. The American Naturalist, 935 – 953. https://doi.org/10.1086/285719 | |
dc.identifier.citedreference | Mathys, B. A., & Lockwood, J. L. ( 2009 ). Rapid evolution of great kiskadees on Bermuda: An assessment of the ability of the island rule to predict the direction of contemporary evolution in exotic vertebrates. Journal of Biogeography, 36, 2204 – 2211. https://doi.org/10.1111/j.1365-2699.2009.02169.x | |
dc.identifier.citedreference | McNab, B. K. ( 2010 ). Geographic and temporal correlations of mammalian size reconsidered: A resource rule. Oecologia, 164 ( 1 ), 13 – 23. https://doi.org/10.1007/s00442-010-1621-5 | |
dc.identifier.citedreference | Meiri, S., & Dayan, T. ( 2003 ). On the validity of Bergmann’s rule. Journal of Biogeography, 30, 331 – 351. | |
dc.identifier.citedreference | Millien, V., Kathleen Lyons, S., Olson, L., Smith, F. A., Wilson, A. B., & Yom‐Tov, Y. ( 2006 ). Ecotypic variation in the context of global climate change: Revisiting the rules. Ecology Letters, 9, 853 – 869. https://doi.org/10.1111/j.1461-0248.2006.00928.x | |
dc.identifier.citedreference | Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., … Turelli, M. ( 2007 ). Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecology Letters, 10, 315 – 331. | |
dc.identifier.citedreference | Morlon, H., Kefi, S., & Martinez, N. D. ( 2014 ). Effects of trophic similarity on community composition. Ecology Letters, 17 ( 12 ), 1495 – 1506. https://doi.org/10.1111/ele.12356 | |
dc.identifier.citedreference | Novak, M., & Wootton, J. T. ( 2008 ). Estimating nonlinear interaction strengths: An observation‐based method for species‐rich food webs. Ecology, 89 ( 8 ), 2083. https://doi.org/10.1890/08-0033.1 | |
dc.identifier.citedreference | Olalla‐Tárraga, M. Á., & Rodríguez, M. Á. ( 2007 ). Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Global Ecology and Biogeography, 16, 606 – 617. | |
dc.identifier.citedreference | Olson, S. L., & James, H. F. ( 1982 ). Fossil birds from the Hawaiian Islands: Evidence for wholesale extinction by man before western contact. Science, 217, 633 – 635. https://doi.org/10.1126/science.217.4560.633 | |
dc.identifier.citedreference | Otto, S. B., Rall, B. C., & Brose, U. ( 2007 ). Allometric degree distributions facilitate food-web stability. Nature, 450 ( 7173 ), 1226. | |
dc.identifier.citedreference | Pagel, M. D., May, R. M., & Collie, A. R. ( 1991 ). Ecological aspects of the geographical distribution and diversity of mammalian species. The American Naturalist, 137, 791 – 815. | |
dc.identifier.citedreference | Paine, R. T. ( 1966 ). Food web complexity and species diversity. The American Naturalist, 100, 65 – 75. | |
dc.identifier.citedreference | Pawar, S., Dell, A. I., & Savage, V. M. ( 2012 ). Dimensionality of consumer search space drives trophic interaction strengths. Nature, 486 ( 7404 ), 485. https://doi.org/10.1038/nature11131 | |
dc.identifier.citedreference | Petchey, O. L., Beckerman, A. P., Riede, J. O., & Warren, P. H. ( 2008 ). Size, foraging, and food web structure. Proceedings of the National Academy of Sciences USA, 105, 4191 – 4196. https://doi.org/10.1073/pnas.0710672105 | |
dc.identifier.citedreference | Peters, R. H. ( 1983 ). The ecological implications of body size. UK: Cambridge University Press. | |
dc.identifier.citedreference | Pianka, E. R. ( 1966 ). Latitudinal gradients in species diversity: A review of concepts. The American Naturalist, 33 – 46. https://doi.org/10.1086/282398 | |
dc.identifier.citedreference | Piechnik, D. A., Lawler, S. P., & Martinez, N. D. ( 2008 ). Food‐web assembly during a classic biogeographic study: Species’ “trophic breadth” corresponds to colonization order. Oikos, 117, 665 – 674. https://doi.org/10.1111/j.0030-1299.2008.15915.x | |
dc.identifier.citedreference | Pielou, E. C. ( 1977 ). The latitudinal spans of seaweed species and their patterns of overlap. Journal of Biogeography, 4, 299 – 311. | |
dc.identifier.citedreference | Pimm, S. L. ( 1982 ). Food webs. Dordrecht, The Netherlands: Springer. | |
dc.identifier.citedreference | Pimm, S. L., Lawton, J. H., & Cohen, J. E. ( 1991 ). Food web patterns and their consequences. Nature, 350 ( 6320 ), 669. https://doi.org/10.1038/350669a0 | |
dc.identifier.citedreference | Poelen, J. H., Simons, J. D., Mungall, C. J. ( 2014 ). Global biotic interactions: An open infrastructure to share and analyze species‐interaction datasets. Ecological Informatics, 24, 148 – 159. | |
dc.identifier.citedreference | Poisot, T., Canard, E., Mouillot, D., Mouquet, N., & Gravel, D. ( 2012 ). The dissimilarity of species interaction networks. Ecology Letters, 15, 1353 – 1361. https://doi.org/10.1111/ele.12002 | |
dc.identifier.citedreference | Poisot, T., Gravel, D., Leroux, S., Wood, S. A., Fortin, M. J., Baiser, B., … Stouffer, D. B. ( 2016 ). Synthetic datasets and community tools for the rapid testing of ecological hypotheses. Ecography, 39 ( 4 ), 402 – 408. | |
dc.identifier.citedreference | Poisot, T., Stouffer, D. B., & Gravel, D. ( 2015 ). Beyond species: Why ecological interaction networks vary through space and time. Oikos, 124, 243 – 251. | |
dc.identifier.citedreference | Polis, G. A. ( 1991 ). Complex trophic interactions in deserts: An empirical critique of food‐web theory. The American Naturalist, 123 – 155. https://doi.org/10.1086/285208 | |
dc.identifier.citedreference | Post, D. M. ( 2002 ). The long and short of food‐chain length. Trends in Ecology and Evolution, 17, 269 – 277. https://doi.org/10.1016/S0169-5347(02)02455-2 | |
dc.identifier.citedreference | Riede, J. O., Rall, B. C., Banasek‐Richter, C., Navarrete, S. A., Wieters, E. A., Emmerson, M. C., … Brose, U. ( 2010 ). Scaling of food‐web properties with diversity and complexity across ecosystems. Advances in Ecological Research, 42, 139 – 170. | |
dc.identifier.citedreference | Riemer, K., Guralnick, R. P., & White, E. P. ( 2018 ). No general relationship between mass and temperature in endothermic species. eLife, 7. https://doi.org/10.7554/eLife.27166 | |
dc.identifier.citedreference | Rohde, K., Heap, M., & Heap, D. ( 1993 ). Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142 ( 1 ), 1 – 16. https://doi.org/10.1086/285526 | |
dc.identifier.citedreference | Rohr, R. P., Scherer, H., Kehrli, P., Mazza, C., & Bersier, L.‐F. ( 2010 ). Modeling food webs: Exploring unexplained structure using latent traits. The American Naturalist, 176, 170 – 177. https://doi.org/10.1086/653667 | |
dc.identifier.citedreference | Rominger, A. J., Goodman, K. R., Lim, J. Y., Armstrong, E. E., Becking, L. E., Bennett, G. M., … Martinez, N. D. ( 2016 ). Community assembly on isolated islands: Macroecology meets evolution. Global Ecology and Biogeography, 25 ( 7 ), 769 – 780. | |
dc.identifier.citedreference | Rosenzweig, M. L. ( 1968 ). Net primary productivity of terrestrial communities: Prediction from climatological data. The American Naturalist, 102, 67 – 74. https://doi.org/10.1086/282523 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.