Show simple item record

Incentivizing sustainable development: The impact of a recent policy reform on electricity production efficiency in China

dc.contributor.authorLi, Fan
dc.contributor.authorXie, Jiajia
dc.contributor.authorWang, Wenche
dc.date.accessioned2019-09-30T15:32:01Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:32:01Z
dc.date.issued2019-07
dc.identifier.citationLi, Fan; Xie, Jiajia; Wang, Wenche (2019). "Incentivizing sustainable development: The impact of a recent policy reform on electricity production efficiency in China." Sustainable Development 27(4): 770-780.
dc.identifier.issn0968-0802
dc.identifier.issn1099-1719
dc.identifier.urihttps://hdl.handle.net/2027.42/151331
dc.description.abstractChina’s rapid economic growth has tremendously accelerated its energy use, calling for a more sustainable supply of scarce and nonrenewable energy. Using a firm‐level dataset of 30 major Chinese electricity utilities from 2010 to 2014, this paper applies a stochastic frontier analysis to determine the utilities’ technical efficiency, incorporating their operational environments related to a recent policy reform to encourage sustainable development. Our main findings are (a) state ownership, consumer density, and a chief executive officer with a science and engineering background are factors that can improve technical efficiency; (b) asset‐related subsidy increases efficiency whereas income‐related subsidy lowers efficiency; and (c) the five largest regional electricity generation firms exhibit above‐average efficiency levels. These results provide evidence that supports the recent Chinese policy reform. The findings also suggest that electricity generation efficiency, which is essential to sustainable economic development, can be improved through performance‐based regulation and incentives.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherstochastic frontier analysis
dc.subject.othergovernment subsidy
dc.subject.otherelectricity
dc.subject.otherefficiency
dc.titleIncentivizing sustainable development: The impact of a recent policy reform on electricity production efficiency in China
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelUrban Planning
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelEducation
dc.subject.hlbsecondlevelInformation and Library Science
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelSocial Sciences (General)
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151331/1/sd1942.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151331/2/sd1942_am.pdf
dc.identifier.doi10.1002/sd.1942
dc.identifier.sourceSustainable Development
dc.identifier.citedreferenceRezitis, A. N., Tsiboukas, K., & Tsoukalas, S. ( 2003 ). Investigation of factors influencing the technical efficiency of agricultural producers participating in farm credit programs: The case of Greece. Journal of Agricultural and Applied Economics, 35 ( 3 ), 529 – 541. https://doi.org/10.1017/S1074070800028261
dc.identifier.citedreferenceSmith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., & Delgado, A. S. ( 2011 ). Anthropogenic sulfur dioxide emissions: 1850‐2005. Atmospheric Chemistry and Physics, 11, 1101 – 1116. https://doi.org/10.5194/acp‐11‐1101‐2011
dc.identifier.citedreferenceOu, P., Huang, R., & Yao, X. ( 2016 ). Economic impacts of power shortage. Sustainability, 8 ( 7 ), 687. https://doi.org/10.3390/su8070687
dc.identifier.citedreferencePhillips, M. A. ( 2013 ). Inefficiency in Japanese water utility firms: A stochastic frontier approach. Journal of Regulatory Economics, 44 ( 2 ), 197 – 214. https://doi.org/10.1007/s11149‐013‐9225‐8
dc.identifier.citedreferenceReichenbach, J., & Requate, T. ( 2012 ). Subsidies for renewable energies in the presence of learning effects and market power. Resource & Energy Economics, 34 ( 2 ), 236 – 254. https://doi.org/10.1016/j.reseneeco.2011.11.001
dc.identifier.citedreferenceSarıca, K., & Or, I. ( 2007 ). Efficiency assessment of Turkish power plants using data envelopment analysis. Energy, 32 ( 8 ), 1484 – 1499. https://doi.org/10.1016/j.energy.2006.10.016
dc.identifier.citedreferenceZhou, Y., Xing, X., Fang, K., Liang, D., & Xu, C. ( 2013 ). Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy, 57, 68 – 75. https://doi.org/10.1016/j.enpol.2012.09.060
dc.identifier.citedreferenceZhao, X., & Ma, C. ( 2013 ). Deregulation, vertical unbundling and the performance of China’s large coal‐fired power plants. Energy Economics, 40, 474 – 483. https://doi.org/10.1016/j.eneco.2013.08.003
dc.identifier.citedreferenceZhang, N., Kong, F., Choi, Y., & Zhou, P. ( 2014 ). The effect of size‐control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy, 70, 193 – 200. https://doi.org/10.1016/j.enpol.2014.03.031
dc.identifier.citedreferenceZhang, N., & Choi, Y. ( 2013 ). Total‐factor carbon emission performance of fossil fuel power plants in China: A metafrontier non‐radial Malmquist index analysis. Energy Economics, 40, 549 – 559. https://doi.org/10.1016/j.eneco.2013.08.012
dc.identifier.citedreferenceZeng, M., Yang, Y., Wang, L., & Sun, J. ( 2016 ). The power industry reform in China 2015: Policies, evaluations and solutions. Renewable & Sustainable Energy Reviews, 57, 94 – 110. https://doi.org/10.1016/j.rser.2015.12.203
dc.identifier.citedreferenceYu, F., Guo, Y., Le‐Nguyen, K., Barnes, S., & Zhang, W. ( 2016 ). The impact of government subsidies and enterprises’ R&D investment: A panel data study from renewable energy in china. Energy Policy, 89, 106 – 113. https://doi.org/10.1016/j.enpol.2015.11.009
dc.identifier.citedreferenceYang, H., & Pollitt, M. ( 2010 ). The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal‐fired power plants. Energy Policy, 38 ( 8 ), 4440 – 4444. https://doi.org/10.1016/j.enpol.2010.03.075
dc.identifier.citedreferenceYang, H., & Pollitt, M. ( 2009 ). Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal‐fired power plants. European Journal of Operational Research, 197 ( 3 ), 1095 – 1105. https://doi.org/10.1016/j.ejor.2007.12.052
dc.identifier.citedreferenceWang, X., & Lin, B. ( 2017 ). Electricity subsidy reform in China. Energy & Environment, 28 ( 3 ), 245 – 262. https://doi.org/10.1177/0958305X16681681
dc.identifier.citedreferenceSueyoshi, T., Goto, M., & Ueno, T. ( 2010 ). Performance analysis of US coal‐fired power plants by measuring three DEA efficiencies. Energy Policy, 38 ( 4 ), 1675 – 1688. https://doi.org/10.1016/j.enpol.2009.11.017
dc.identifier.citedreferenceSueyoshi, T., & Goto, M. ( 2011 ). Operational synergy in the US electric utility industry under an influence of deregulation policy: A linkage to financial performance and corporate value. Energy Policy, 39 ( 2 ), 699 – 713. https://doi.org/10.1016/j.enpol.2010.10.043
dc.identifier.citedreferenceAlavi, H. ( 1994 ). The control of industrial pollution: Implications for technology choice and growth. Sustainable Development, 2 ( 2 ), 29 – 35. https://doi.org/10.1002/sd.3460020204
dc.identifier.citedreferenceAndor, M., & Voss, A. ( 2016 ). Optimal renewable‐energy promotion: Capacity subsidies vs. generation subsidies. Resource and Energy Economics, 45, 144 – 158. https://doi.org/10.1016/j.reseneeco.2016.06.002
dc.identifier.citedreferenceBattese, G. E., & Coelli, T. J. ( 1992 ). Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis, 3 ( 1–2 ), 153 – 169. https://doi.org/10.1007/BF00158774
dc.identifier.citedreferenceBattese, G. E., & Coelli, T. J. ( 1995 ). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics, 20, 325 – 332. https://doi.org/10.1007/BF01205442
dc.identifier.citedreferenceBi, G. B., Song, W., Zhou, P., & Liang, L. ( 2014 ). Does environmental regulation affect energy efficiency in China’s thermal power generation? Empirical evidence from a slacks‐based DEA model. Energy Policy, 66, 537 – 546. https://doi.org/10.1016/j.enpol.2013.10.056
dc.identifier.citedreferenceBoden, T. A., Marland, G., & Andres, R. J. ( 2010 ). Global, regional, and national fossil‐fuel CO 2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
dc.identifier.citedreferenceBP. ( 2013 ). BP Statistical Review of World Energy.
dc.identifier.citedreferenceChen, Z., Barros, C. P., & Borges, M. R. ( 2015 ). A Bayesian stochastic frontier analysis of Chinese fossil‐fuel electricity generation companies. Energy Economics, 48, 136 – 144. https://doi.org/10.1016/j.eneco.2014.12.020
dc.identifier.citedreferenceChina Electricity Council. ( 2016 ). Chinese electricity sector report. China Market Press, Beijing, China.
dc.identifier.citedreferenceCoelli, T. J. ( 1996 ). A guide to FRONTIER version 4.1: A computer program for stochastic frontier production and cost function estimation. University of New England CEPA Working Paper No. 7/96.
dc.identifier.citedreferenceCoelli, T. J., Rao, D. S. P., O’Donnell, C. J., & Battese, G. E. ( 2005 ). An introduction to efficiency and productivity analysis. New York, NY: Springer.
dc.identifier.citedreferenceDhital, R. P., Ito, Y., Kaneko, S., Komatsu, S., Mihara, R., & Yoshida, Y. ( 2016 ). Does institutional failure undermine the physical design performance of solar water pumping systems in rural Nepal. Sustainability, 8 ( 8 ), 770.
dc.identifier.citedreferenceDu, L., He, Y., & Yan, J. ( 2013 ). The effects of electricity reforms on productivity and efficiency of China’s fossil‐fired power plants: An empirical analysis. Energy Economics, 40, 804 – 812. https://doi.org/10.1016/j.eneco.2013.09.024
dc.identifier.citedreferenceFallahi, A., Ebrahimi, R., & Ghaderi, S. F. ( 2011 ). Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study. Energy, 36 ( 11 ), 6398 – 6405. https://doi.org/10.1016/j.energy.2011.09.034
dc.identifier.citedreferenceFarsi, M., & Filippini, M. ( 2009 ). An analysis of cost efficiency in Swiss multi‐utilities. Energy Economics, 31 ( 2 ), 306 – 315. https://doi.org/10.1016/j.eneco.2008.11.009
dc.identifier.citedreferenceJin, Z., Shang, Y., & Xu, J. ( 2018 ). The impact of government subsidies on private R&D and firm performance: Does ownership matter in China’s manufacturing industry? Sustainability, 10 ( 7 ), 2205. https://doi.org/10.3390/su10072205
dc.identifier.citedreferenceLam, P. L., & Shiu, A. ( 2001 ). A data envelopment analysis of the efficiency of China’s thermal power generation. Utilities Policy, 10 ( 2 ), 75 – 83. https://doi.org/10.1016/S0957‐1787(02)00036‐X
dc.identifier.citedreferenceLam, P. L., & Shiu, A. ( 2004 ). Efficiency and productivity of China’s thermal power generation. Review of Industrial Organization, 24 ( 1 ), 73 – 93. https://doi.org/10.1023/B:REIO.0000031347.79588.f3
dc.identifier.citedreferenceLin, B., & Jiang, Z. ( 2011 ). Estimates of energy subsidies in China and impact of energy subsidy reform. Energy Economics, 33 ( 2 ), 273 – 283. https://doi.org/10.1016/j.eneco.2010.07.005
dc.identifier.citedreferenceMa, C., & Zhao, X. ( 2015 ). China’s electricity market restructuring and technology mandates: Plant‐level evidence for changing operational efficiency. Energy Economics, 47, 227 – 237. https://doi.org/10.1016/j.eneco.2014.11.012
dc.identifier.citedreferenceMa, H., Shi, C., & Chou, N. T. ( 2016 ). China’s water utilization efficiency: An analysis with environmental considerations. Sustainability, 8 ( 6 ), 516. https://doi.org/10.3390/su8060516
dc.identifier.citedreferenceMarques, R., Berg, S., & Yane, S. ( 2014 ). Nonparametric benchmarking of Japanese water utilities: Institutional and environmental factors affecting efficiency. Journal of Water Resources Planning and Management, 140 ( 5 ), 562 – 571. https://doi.org/10.1061/(ASCE)WR.1943‐5452.0000366
dc.identifier.citedreferenceNicolini, M., & Tavoni, M. ( 2017 ). Are renewable energy subsidies effective? Evidence from Europe. Renewable and Sustainable Energy Reviews, 74, 412 – 423. https://doi.org/10.1016/j.rser.2016.12.032
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.