Show simple item record

Weight‐of‐Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification

dc.contributor.authorBurton, G. Allen
dc.contributor.authorHudson, Michelle L.
dc.contributor.authorHuntsman, Philippa
dc.contributor.authorCarbonaro, Richard F.
dc.contributor.authorRader, Kevin J.
dc.contributor.authorWaeterschoot, Hugo
dc.contributor.authorBaken, Stijn
dc.contributor.authorGarman, Emily
dc.date.accessioned2019-09-30T15:32:04Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-09-30T15:32:04Z
dc.date.issued2019-09
dc.identifier.citationBurton, G. Allen; Hudson, Michelle L.; Huntsman, Philippa; Carbonaro, Richard F.; Rader, Kevin J.; Waeterschoot, Hugo; Baken, Stijn; Garman, Emily (2019). "Weight‐of‐Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification." Environmental Toxicology and Chemistry 38(9): 1839-1849.
dc.identifier.issn0730-7268
dc.identifier.issn1552-8618
dc.identifier.urihttps://hdl.handle.net/2027.42/151334
dc.description.abstractThe United Nations and the European Union have developed guidelines for the assessment of long‐term (chronic) chemical environmental hazards. This approach recognizes that these hazards are often related to spillage of chemicals into freshwater environments. The goal of the present study was to examine the concept of metal ion removal from the water column in the context of hazard assessment and classification. We propose a weight‐of‐evidence approach that assesses several aspects of metals including the intrinsic properties of metals, the rate at which metals bind to particles in the water column and settle, the transformation of metals to nonavailable and nontoxic forms, and the potential for remobilization of metals from sediment. We developed a test method to quantify metal removal in aqueous systems: the extended transformation/dissolution protocol (T/DP‐E). The method is based on that of the Organisation for Economic Co‐operation and Development (OECD). The key element of the protocol extension is the addition of substrate particles (as found in nature), allowing the removal processes to occur. The present study focused on extending this test to support the assessment of metal removal from aqueous systems, equivalent to the concept of “degradability” for organic chemicals. Although the technical aspects of our proposed method are different from the OECD method for organics, its use for hazard classification is equivalent. Models were developed providing mechanistic insight into processes occurring during the T/DP‐E method. Some metals, such as copper, rapidly decreased (within 96 h) under the 70% threshold criterion, whereas others, such as strontium, did not. A variety of method variables were evaluated and optimized to allow for a reproducible, realistic hazard classification method that mimics reasonable worst‐case scenarios. We propose that this method be standardized for OECD hazard classification via round robin (ring) testing to ascertain its intra‐ and interlaboratory variability. Environ Toxicol Chem 2019;38:1839–1849. © 2019 SETAC.
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Chemical Society
dc.subject.otherAquatic metals
dc.subject.otherOrganisation for Economic Co‐operation and Development environmental protocols
dc.subject.otherMetal classification
dc.subject.otherMetal hazards in aquatic systems
dc.titleWeight‐of‐Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151334/1/etc4470_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151334/2/etc4470.pdf
dc.identifier.doi10.1002/etc.4470
dc.identifier.sourceEnvironmental Toxicology and Chemistry
dc.identifier.citedreferenceSimpson SL, Apte SC, Batley GE. 1998. Effect of short‐term resuspension events on trace metal speciation in polluted anoxic sediments. Environ Sci Technol 32: 620 – 625.
dc.identifier.citedreferenceSchlekat C, Garman E, Vangheluwe M, Burton GA Jr. 2016. Development of a bioavailability‐based risk assessment approach for nickel in freshwater sediments. Integr Environ Assess Manag 12: 735 – 746.
dc.identifier.citedreferenceSchwarzenbach RP, Gschwend PM, Imboden DM. 1993. Environmental Organic Chemistry. Wiley‐Intersceince, New York, NY, USA.
dc.identifier.citedreferenceSigg L, Sturm M, Kistler D. 1987. Vertical transport of heavy metals by settling particles in Lake Zurich. Limnol Oceanogr 32: 112 – 130.
dc.identifier.citedreferenceSkeaff JM, Adams WJ, Rodriguez P, Brouwers T, Waeterschoot H. 2011. Advances in metals classification under the UN Globally Harmonized System of Classification and Labelling (UN GHS). Integr Environ Assess Manag 7: 559 – 576.
dc.identifier.citedreferenceSkeaff JM, Beaudoin R. 2014. Transformation/dissolution characteristics of a nickel matte and nickel concentrates for acute and chronic hazard classification. Integr Environ Assess Manag 11: 130 – 142.
dc.identifier.citedreferenceSkeaff JM, Beaudoin R, Wang R, Joyce B. 2012. Transformation/dissolution examination of antimony and antimony compounds with speciation of the transformation/dissolution solutions. Integr Environ Assess Manag 9: 98 – 113.
dc.identifier.citedreferenceSkeaff JM, Dubreuil AA, Brigham SI. 2002. The concept of persistence as applied to metals for aquatic hazard identification. Environ Toxicol Chem 21: 2581 – 2590.
dc.identifier.citedreferenceSkeaff JM, Hardy DJ, King P. 2008. A new approach to the hazard classification of alloys based on transformation/dissolution. Integr Environ Assess Manag 4: 75 – 93.
dc.identifier.citedreferenceSmith DS, Bell RA, Kramer JR. 2002. Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites. Comp Biochem Physiol C Toxicol Pharmacol 133: 65 – 74.
dc.identifier.citedreferenceSmolyakov BS, Ryzhikh AP, Bortnikova SB, Saeva OP, Chernova NY. 2010a. Behavior of metals (Cu, Zn and Cd) in the initial stage of water system contamination: Effect of pH and suspended particles. Appl Geochem 25: 1153 – 1161.
dc.identifier.citedreferenceSmolyakov BS, Ryzhikh AP, Romanov RE. 2010b. The fate of Cu, Zn, and Cd in the initial stage of water system contamination: The effect of phytoplankton activity. J Hazard Mater 184: 819 – 825.
dc.identifier.citedreferenceStauber JL, Benning RJ, Hales LT, Eriksen R, Nowak B. 2000. Copper bioavailability and amelioration of toxicity in Macquarie Harbour, Tasmania, Australia. Mar Freshw Res 51: 1 – 10.
dc.identifier.citedreferenceStumm W, Morgan J. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. Wiley Interscience, New York, NY, USA.
dc.identifier.citedreferenceTebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM. 2004. Biogenic manganese oxides: Properties and mechanisms of formation. Annu Rev Earth Planet Sci 32: 287 – 328.
dc.identifier.citedreferenceTessier A, Campbell PGC. 1987. Partitioning of trace metals in sediments: Relationships with bioavailability. Hydrobiologia 149: 43 – 52.
dc.identifier.citedreferenceThomann RV. 1984. Physio‐chemical and ecological modeling the fate of toxic substances in natural water systems. Ecol Modell 22: 145 – 170.
dc.identifier.citedreferenceThomann RV, Mueller JA. 1987. Principles of Surface Water Quality Modeling and Control. Harper & Row, New York, NY, USA.
dc.identifier.citedreferenceTipping E. 2002. Cation Binding by Humic Substances. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceTonkin JW, Balistrieri LS, Murray JW. 2004. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl Geochem 19: 29 – 53.
dc.identifier.citedreferenceTrueblood KN, Lucas HJ. 1952. Coördination of silver ion with unsaturated compounds. V. Ethylene and propene. J Am Chem Soc 74: 1338 – 1339.
dc.identifier.citedreferenceUnited Nations. 2017. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 7th ed. New York, NY, USA, and Geneva, Switzerland.
dc.identifier.citedreferenceVan den Berg GA, Meijers GGA, van der Heijdt LM, Zwolsman JJG. 2001. Dredging‐related mobilisation of trace metals: A case study in The Netherlands. Water Res 35: 1979 – 1986.
dc.identifier.citedreferenceVan Hullebusch E, Auvray F, Bordas F, Deluchat V, Chazal PM, Baudu M. 2003a. Role of organic matter in copper mobility in a polymictic lake following copper sulfate treatment (Courtille Lake, France). Environ Technol 24: 787 – 796.
dc.identifier.citedreferenceVan Hullebusch E, Chatenet P, Deluchat V, Chazal PM, Froissard D, Botineau M, Ghestem A, Baudu M. 2003b. Copper accumulation in a reservoir ecosystem following copper sulfate treatment (St. Germain Les Belles, France). Water Air Soil Pollut 150: 3 – 22.
dc.identifier.citedreferenceVan Hullebusch E, Chatenet P, Deluchat V, Chazal PM, Froissard D, Lens PNL, Baudu M. 2003c. Fate and forms of Cu in a reservoir ecosystem following copper sulfate treatment (Saint Germain les Belles, France). Journal de Physique IV 107: 1333 – 1336.
dc.identifier.citedreferenceVan Hullebusch E, Deluchat V, Chazal PM, Baudu M. 2002. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part II. Case of copper sulfate. Environ Pollut 120: 627 – 634.
dc.identifier.citedreferenceZhu D, Herbert BE, Schlautman MA, Carraway ER. 2004. Characterization of cation–π interactions in aqueous solution using deuterium nuclear magnetic resonance spectroscopy. J Environ Qual 33: 276 – 284.
dc.identifier.citedreferenceAtkinson CA, Jolley DF, Simpson SL. 2007. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69: 1428 – 1437.
dc.identifier.citedreferenceBaccini P, Ruchti J, Wanner O, Grieder E. 1979. Melimex, an experimental heavy metal pollution study: Regulation of trace metal concentrations in limno‐corrals. Schweizerische Zeitschrifte für Hydrologie 41: 202 – 227.
dc.identifier.citedreferenceBalistrieri LS, Murray JW. 1986. The surface‐chemistry of sediments from the panama basin—The influence of Mn oxides on metal adsorption. Geochim Cosmochim Acta 50: 2235 – 2243.
dc.identifier.citedreferenceBalistrieri LS, Murray JW, Paul B. 1992. The biogeochemical cycling of trace metals in the water column of Lake Sammamish, Washington: Response to seasonally anoxic conditions. Limnol Oceanogr 37: 529 – 548.
dc.identifier.citedreferenceBell RA, Kramer JR. 1999. Structural chemistry and geochemistry of silver–sulfur compounds: Critical review. Environ Toxicol Chem 18: 9 – 22.
dc.identifier.citedreferenceBird GA, Evenden WG. 1996. Transfer of Co‐60, Zn‐65, Tc‐95, Cs‐134 and U‐238 from water to organic sediment. Water Air Soil Pollut 86: 251 – 261.
dc.identifier.citedreferenceBird GA, Stephenson M, Roshon R, Schwartz WJ, Motycka M. 1995. Fate of Co‐60 and Cs‐134 added to the hypolimnion of a Canadian Shield lake. Can J Fish Aquat Sci 52: 2276 – 2289.
dc.identifier.citedreferenceBurton GA Jr, Nguyen LTH, Janssen C, Baudo R, McWilliam R, Bossuyt B, Beltrami M, Green A. 2005. Field validation of sediment zinc toxicity. Environ Toxicol Chem 24: 541 – 553.
dc.identifier.citedreferenceCaetano M, Madureira M‐J, Vale C. 2003. Metal remobilisation during resuspension of anoxic contaminated sediment: Short‐term laboratory study. Water Air Soil Pollut 143: 23 – 40.
dc.identifier.citedreferenceCalmano W, Förstner U, Hong J. 1993. Mobilization and scavenging of heavy metals following resuspension of anoxic sediments from the Elbe River. In Alpers CL, Blowes DW, eds, Environmental Geochemistry of Sulfide Oxidation. American Chemical Society, Washington, DC, pp 298 – 321.
dc.identifier.citedreferenceCantwell MG, Burgess RM, King JW. 2008. Resuspension of contaminated field and formulated reference sediments part I: Evaluation of metal release under controlled laboratory conditions. Chemosphere 73: 1824 – 1831.
dc.identifier.citedreferenceCarbonaro RF, Di Toro DM. 2007. Linear free energy relationships for metal–ligand complexation: Monodentate binding to negatively‐charged oxygen donor atoms. Geochim Cosmochim Acta 71: 3958 – 3968.
dc.identifier.citedreferenceChapman PM, Wang F, Janssen C, Persoone G, Allen HE. 1998. Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55: 2221 – 2243.
dc.identifier.citedreferenceCornell RM. 1988. The influence of some divalent cations on the transformation of ferrihydrite to more crystalline products. Clay Miner 23: 329 – 332.
dc.identifier.citedreferenceCostello DM, Burton GA. 2014. Response of stream ecosystem function and structure to sediment metal: Context‐dependency and variation among endpoints. Elementa (Wash D C) 2. DOI:  10.12952/journal.elementa.000030.
dc.identifier.citedreferenceCostello DM, Burton GA, Hammerschmidt CR, Rogevich EC, Schlekat CE. 2011. Nickel phase partitioning and toxicity in field‐deployed sediments. Environ Sci Technol 45: 5798 – 5805.
dc.identifier.citedreferenceCostello DM, Burton GA, Hammerschmidt CR, Taulbee WK. 2012. Evaluating the performance of diffusive gradients in thin films (DGTs) for predicting Ni sediment toxicity. Environ Sci Technol 46: 10239 – 10246.
dc.identifier.citedreferenceCostello DM, Hammerschmidt CR, Burton GA. 2015. Copper sediment toxicity and partitioning during oxidation in a flow‐through flume. Environ Sci Technol 49: 6926 – 6933.
dc.identifier.citedreferenceCostello DM, Hammerschmidt CR, Burton GA. 2016. Nickel partitioning and toxicity in sediment during aging: Variation in toxicity related to stability of metal partitioning. Environ Sci Technol 50: 11337 – 11345.
dc.identifier.citedreferenceCuster KW, Burton GA Hammerschmidt CR. 2016a. Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure. Environ Pollut 208: 309 – 317.
dc.identifier.citedreferenceCuster KW, Burton GA Jr, Kochersberger J, Anderson P, Fetters K, Hummel S. 2016b. Macroinvertebrate responses to nickel in multi‐system exposures. Environ Toxicol Chem 35: 101 – 114.
dc.identifier.citedreferenceDe Forest DK, Brix KV, Adams WJ. 2007. Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84: 236 – 246.
dc.identifier.citedreferenceDe Jonge M, Teuchies J, Meire P, Blust R, Bervoets L. 2012. The impact of increased oxygen conditions on metal‐contaminated sediments part I: Effects on redox status, sediment geochemistry and metal bioavailability. Water Res 46: 2205 – 2214.
dc.identifier.citedreferenceDiamond ML, Mackay D, Cornett RJ, Chant LA. 1990a. A model of the exchange of inorganic chemicals between water and sediments. Environ Sci Technol 24: 713 – 722.
dc.identifier.citedreferenceDiamond ML, Mackay D, Cornett RJ, Chant LA. 1990b. A model of the exchange of inorganic chemicals between water and sediments. Environ Sci Technol 24: 713 – 722.
dc.identifier.citedreferenceDi Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001a. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20: 2383 – 2396.
dc.identifier.citedreferenceDi Toro DM, Kavvadas CD, Mathew R, Paquin PR, Winfield RP. 2001b. The persistence and availability of metals in aquatic environments. International Council on Metals and the Environment, Ottawa, Canada.
dc.identifier.citedreferenceDi Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26: 96 – 101.
dc.identifier.citedreferenceDi Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS. 1990. Toxicity of cadmium in sediments—The role of acid volatile sulfide. Environ Toxicol Chem 9: 1487 – 1502.
dc.identifier.citedreferenceDzombak DA, Morel FMM. 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley & Sons, New York, NY, USA.
dc.identifier.citedreferenceEffler SW, Litten S, Field SD, Tong‐Ngork T, Hale F, Meyer M, Quirk M. 1980. Whole lake responses to low level copper sulfate treatment. Water Res 14: 1489 – 1499.
dc.identifier.citedreferenceFetters KJ, Costello DM, Hammerschmidt CR, Burton GA. 2016. Toxicological effects of short‐term resuspension of metal‐contaminated freshwater and marine sediments. Environ Toxicol Chem 35: 676 – 686.
dc.identifier.citedreferenceFlemming CA, Trevors JT. 1989. Copper toxicity and chemistry in the environment: A review. Water Air Soil Pollut 44: 143 – 158.
dc.identifier.citedreferenceFord RG, Bertsch PM, Farley KJ. 1997. Changes in transition and heavy metal partitioning during hydrous iron oxide aging. Environ Sci Technol 31: 2028 – 2033.
dc.identifier.citedreferenceGächter R. 1979. Melimex, an experimental heavy metal pollution study: Goals, experimental design and major findings. Schweizerische Zeitschrifte für Hydrologie 41: 169 – 176.
dc.identifier.citedreferenceGächter R, Geiger W. 1979. MELIMEX, an experimental heavy metal pollution study: Behaviour of heavy metals in an aquatic food chain. Schweizerische Zeitschrifte für Hydrologie 41: 277 – 290.
dc.identifier.citedreferenceHart BT, Currey NA, Jones MJ. 1992. Biogeochemistry and effects of copper, manganese and zinc added to enclosures in Island Billabong, Magela Creek, Northern Australia. Hydrobiologia 230: 93 – 134.
dc.identifier.citedreferenceHaughey MA, Anderson MA, Whitney RD, Taylor WD, Losee RF. 2000. Forms and fate of Cu in a source drinking water reservoir following CuSO 4 treatment. Water Res 34: 3440 – 3452.
dc.identifier.citedreferenceHelm L, Merbach AE. 1999. Water exchange on metal ions: Experiments and simulations. Coord Chem Rev 187: 151 – 181.
dc.identifier.citedreferenceHepner FR, Trueblood KN, Lucas HJ. 1952. Coördination of silver ion with unsaturated compounds. IV. The butenes. J Am Chem Soc 74: 1333 – 1337.
dc.identifier.citedreferenceHesslein RH, Broecker WS, Schindler DW. 1980. Fates of metal radiotracers added to a whole lake: Sediment–water interactions. Can J Fish Aquat Sci 37: 378 – 386.
dc.identifier.citedreferenceHommen U, Knopf B, Rüdel H, Schäfers C, De Schamphelaere K, Schlekat C, Garman ER. 2016. A microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions. Environ Toxicol Chem 35: 1172 – 1182.
dc.identifier.citedreferenceHong YS, Kinney KA, Reible DD. 2011. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: Laboratory experiment and model development. Environ Toxicol Chem 30: 564 – 575.
dc.identifier.citedreferenceHuntsman P, Skeaff J, Pawlak M, Beaudoin R. 2018. Transformation/dissolution characterization of tungsten and tungsten compounds for aquatic hazard classification. Integr Environ Assess Manag 14: 498 – 508.
dc.identifier.citedreferenceHuntsman P, Beaudoin R, Rader K, Carbonaro R, Burton GA Jr, Hudson M, Baken S, Garman E, Waeterschoot H. 2019. Method Development for Determining the Removal of Metals from the Water Column under Transformation/Dissolution Conditions for Chronic Hazard Classification. Environ Toxicol Chem. DOI: 10.1002/etc.4471.
dc.identifier.citedreferenceIrving H, Rossotti H. 1956. Some relationships among the stabilities of metal complexes. Acta Chem Scand 10: 72 – 93.
dc.identifier.citedreferenceKasai PH, McLeod D, Watanabe T. 1980. Acetylene and ethylene complexes of copper and silver atoms. Matrix isolation esr study. J Am Chem Soc 102: 179 – 190.
dc.identifier.citedreferenceLiu R, Zhao D, Barnett M. 2006. Fate and transport of copper applied in channel catfish ponds. Water Air Soil Pollut 176: 139 – 162.
dc.identifier.citedreferenceMackay D, Diamond M. 1989. Application of the QWASI (quantitative water air sediment interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes. Chemosphere 18: 1343 – 1365.
dc.identifier.citedreferenceMebane CA, Eakins RJ, Fraser BG, Adams WJ. 2015. Recovery of a mining‐damaged stream ecosystem. Elementa (Wash D C) 3. DOI: 10.12952/journal.elementa.000042
dc.identifier.citedreferenceMendonca R, Daley J, Hudson M, Schlekat C, Burton GA, Costello D. 2017. Metal oxides in surface sediment control nickel bioavailability to benthic macroinvertebrates. Environ Sci Technol 51: 13407 – 13416.
dc.identifier.citedreferenceMills WB, Porcella DB, Ungs MJ, Gherini SA, Summers KV, Mok L, Rupp GL, Bowie GL, Haith DA. 1985. Water quality assessment: A screening procedure for toxic and conventional pollutants in surface and ground water. EPA/600/6-85/002a. US Environmental Protection Agency, Washington, DC.
dc.identifier.citedreferenceMorse JW, Luther GW. 1999. Chemical influences on trace metal–sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63: 3373 – 3378.
dc.identifier.citedreferenceMorse JW, Millero FJ, Cornwell JC, Rickard D. 1987. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci Revi 24: 1 – 42.
dc.identifier.citedreferenceMurray JW, Dillard JG. 1979. Oxidation of cobalt(II) adsorbed on manganese‐dioxide. Geochim Cosmochim Acta 43: 781 – 787.
dc.identifier.citedreferenceNedrich SM, Burton GA. 2017. Indirect effects of climate change on zinc cycling in sediments: The role of changing water levels. Environ Toxicol Chem 36: 2456 – 2464.
dc.identifier.citedreferenceNedrich SM, Chappaz A, Hudson ML, Brown SS, Burton GA Jr. 2017. Biogeochemical controls on the speciation and aquatic toxicity of vanadium and other metals in sediments from a river reservoir. Sci Total Environ 612: 313 – 320.
dc.identifier.citedreferenceNguyen LTH, Burton GA, Schlekat CE, Janssen CR. 2011. Nickel sediment toxicity: Role of acid volatile sulfide. Environ Toxicol Chem 30: 162 – 172.
dc.identifier.citedreferenceNyffeler UP, Santschi PH, Li Y. 1986. The relevance of scavenging kinetics to modeling of sediment–water interactions in natural waters. Limnol Oceanogr 31: 277 – 292.
dc.identifier.citedreferenceOrganisation for Economic Co‐operation and Development. 2003. Descriptions of selected key generic terms used in chemical hazard/risk assessment. Series on Testing and Assessment, No. 44. ENV/JM/MONO/(2003)15. Paris, France.
dc.identifier.citedreferencePlach JM, Elliott AVC, Droppo IG, Warren LA. 2011. Physical and ecological controls on freshwater floc trace metal dynamics. Environ Sci Technol 45: 2157 – 2164.
dc.identifier.citedreferenceR Development Core Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferenceRader KJ, Carbonaro RF, van Hullebusch ED, Baken S, Delbeke K. 2019. The fate of copper added to surface water: Field and modeling studies. Environ Toxicol Chem 38:1386–1399.
dc.identifier.citedreferenceRand G, Hoang T, Brausch J. 2011. Effects of zinc in freshwater microcosms. International Zinc Association, Durham, NC, USA.
dc.identifier.citedreferenceSantschi PH, Nyffeler UP, Anderson RF, Schiff SL, Ohara P, Hesslein RH. 1986. Response of radioactive trace‐metals to acid‐base titrations in controlled experimental ecosystems—Evaluation of transport parameters for application to whole‐lake radiotracer experiments. Can J Fish Aquat Sci 43: 60 – 77.
dc.identifier.citedreferenceSchäfers C. 2003. Community level study with copper in aquatic microcosms. European Copper Institute, Schmallenberg, Germany.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.